Giải Toán 10 trang 67 Tập 1 Chân trời sáng tạo

Với giải bài tập Toán lớp 10 trang 67 Tập 1 trong Bài 2: Định lí côsin và định lí sin sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 67 Tập 1.

1 360 21/02/2023


Giải Toán 10 trang 67 Tập 1

Thực hành 1 trang 67 Toán lớp 10 Tập 1: Tính các cạnh và các góc chưa biết của tam giác ABC trong Hình 4.

Giải Toán 10 Bài 2: Định lí côsin và định lí sin - Chân trời sáng tạo (ảnh 1)

Lời giải:

Theo định lí côsin ta có: BC2=AB2+AC22AB.AC.cosA

=142+1822.14.18.cos620 283,39

BC283,3916,83

Theo hệ quả của định lí côsin ta có:

cosB=AB2+BC2AC22.AB.BC=142+16,8321822.14.16,830,3294

B^70°46'

C^1800(A^+B^)47015'

Vận dụng 1 trang 67 Toán lớp 10 Tập 1Tính khoảng cách giữa hai điểm ở hai đầu của một hồ nước. Biết từ một điểm cách hai đầu hồ lần lượt là 800 m và 900 m người quan sát nhìn hai điểm này dưới một góc 70° (Hình 5).

Giải Toán 10 Bài 2: Định lí côsin và định lí sin - Chân trời sáng tạo (ảnh 1)

Lời giải:

Gọi A, B, C lần lượt là các điểm tại vị trí người quan sát và hai điểm ở hai đầu hồ nước.

Áp dụng định lí côsin ta có:

BC2=AB2+AC22AB.AC.cosA

=8002+90022.800.900.cos70° ≈ 957 490,99.

 BC ≈ 957490,99 ≈ 978,5 m

Vậy khoảng cách giữa hai điểm của một hồ nước là 978,5 m.

2. Định lí sin trong tam giác

Hoạt động khám phá 2 trang 67 Toán lớp 10 Tập 1:

a) Cho tam giác ABC không phải là tam giác vuông có BC = a, AC = b; AB = c và R là bán kính đường tròn ngoại tiếp tam giác đó. Vẽ đường kính BD.

i) Tính sinBDC^  theo a và R.

ii) Tìm mối liên hệ giữa hai góc BAC^  và BDC^. Từ đó chứng minh rằng 2R = asinA.

Giải Toán 10 Bài 2: Định lí côsin và định lí sin - Chân trời sáng tạo (ảnh 1)

b) Cho tam giác ABC với góc A vuông. Tính sinA và so sánh a với 2R để chứng tỏ ta vẫn có công thức 2R = asinA.

Lời giải:

a)

i) Vì BD là đường kính nên BCD^=90°.

Xét tam giác BCD vuông tại C, có:

sinBDC^=BCBD=a2R        (1)

ii)

TH1. Nếu góc A nhọn (Hình 6a) thì:

Ta có hai góc nội tiếp BAC^ BDC^cùng chắn cung BC nên BAC^ = BDC^      (2)

Từ (1) và (2) ta suy ra: sinA=a2R2R=asinA.

TH2. Nếu góc A tù (Hình 6b) thì:

Ta có BAC^+BDC^=180°BAC^=180°BDC^ 

sinBAC^ = sin180°BDC^=sinBDC^      (3)

Từ (1) và (3) ta suy ra: sinA=a2R2R=asinA.

b)

Giải Toán 10 Bài 2: Định lí côsin và định lí sin - Chân trời sáng tạo (ảnh 1)

Vì tam giác ABC vuông tại A nên tâm của đường tròn ngoại tiếp tam giác ABC là trung điểm của BC nên BC = a = 2R.

sinA = sin900=1 

Hay 2R=asinA

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải Toán 10 trang 65 Tập 1

Giải Toán 10 trang 66 Tập 1

Giải Toán 10 trang 67 Tập 1

Giải Toán 10 trang 69 Tập 1

Giải Toán 10 trang 70 Tập 1

Giải Toán 10 trang 71 Tập 1

Giải Toán 10 trang 72 Tập 1

Giải Toán 10 trang 73 Tập 1

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

1 360 21/02/2023


Xem thêm các chương trình khác: