Bài 2 trang 72 Toán 7 Tập 2 | Chân trời sáng tạo Giải Toán lớp 7
Lời giải Bài 2 trang 72 Toán 7 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải Toán 7 Chân trời sáng tạo Bài 6: Tính chất ba đường trung trực của tam giác
Bài 2 trang 72 Toán 7 Tập 2:
Cho tam giác nhọn ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và cho O là điểm cách đều ba đỉnh của tam giác ABC. Chứng minh rằng MO vuông góc với AB, NO vuông góc với BC và PO vuông góc với AC.
Lời giải:
Điểm O là điểm cách đều ba đỉnh của tam giác ABC.
Suy ra O là giao điểm ba đường trung trực của tam giác ABC.
Khi đó do M, N, P lần lượt là trung điểm các cạnh AB, BC, CA nên MO AB, NO BC, PO AC.
Vậy MO vuông góc với AB, NO vuông góc với BC và PO vuông góc với AC.
Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Khởi động trang 71 Toán 7 Tập 2: Điểm nào cách đều ba đỉnh của một tam giác...
Khám phá 1 trang 71 Toán 7 Tập 2: Cho tam giác ABC, em hãy dùng thước kẻ và compa vẽ đường trung trực xy của cạnh BC...
Thực hành 1 trang 71 Toán 7 Tập 2: Cho tam giác nhọn ABC có M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB...
Vận dụng 1 trang 71 Toán 7 Tập 2: Vẽ ba đường trung trực của tam giác ABC vuông tại A...
Khám phá 2 trang 71 Toán 7 Tập 2: Gọi O là giao điểm của hai đường trung trực ứng với cạnh AB, AC của tam giác ABC (Hình 2)...
Thực hành 2 trang 72 Toán 7 Tập 2: Gọi O là giao điểm của ba đường trung trực của tam giác ABC (Hình 4). Hãy dùng compa vẽ đường tròn tâm O...
Vận dụng 2 trang 72 Toán 7 Tập 2: Trên bản đồ quy hoạch một khu dân cư có ba điểm dân cư A, B, C (Hình 5). Tìm địa điểm M để xây một trường học...
Bài 1 trang 72 Toán 7 Tập 2: Vẽ ba tam giác nhọn, vuông, tù.a) Xác định điểm O cách đều ba đỉnh của mỗi tam giác...
Bài 2 trang 72 Toán 7 Tập 2: Cho tam giác nhọn ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và cho O là điểm cách đều...
Bài 3 trang 72 Toán 7 Tập 2: Người ta muốn phục chế lại một đĩa cổ hình tròn bị vỡ chỉ còn lại một mảnh (Hình 6). Làm thế nào để xác định...
Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 5: Đường trung trực của một đoạn thẳng
Bài 6: Tính chất ba đường trung trực của tam giác
Bài 7: Tính chất ba đường trung tuyến của tam giác
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Soạn văn lớp 7 (ngắn nhất) – Chân trời sáng tạo
- Văn mẫu lớp 7 – Chân trời sáng tạo
- Giải sgk Lịch sử 7 – Chân trời sáng tạo
- Lý thuyết Lịch Sử 7 – Chân trời sáng tạo
- Giải sbt Lịch sử 7 – Chân trời sáng tạo
- Giải sgk Địa lí 7 – Chân trời sáng tạo
- Lý thuyết Địa Lí 7 – Chân trời sáng tạo
- Giải sbt Địa lí 7 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 7 Friend plus – Chân trời sáng tạo
- Giải sbt Tiếng Anh 7 Friend plus– Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 7 Friends plus đầy đủ nhất
- Bài tập Tiếng Anh 7 Friends plus theo Unit có đáp án
- Giải sgk Khoa học tự nhiên 7 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sgk Giáo dục công dân 7 – Chân trời sáng tạo
- Lý thuyết Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sbt Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sgk Công nghệ 7 – Chân trời sáng tạo
- Lý thuyết Công nghệ 7 – Chân trời sáng tạo
- Giải sbt Công nghệ 7 – Chân trời sáng tạo
- Giải sgk Tin học 7 – Chân trời sáng tạo
- Lý thuyết Tin học 7 – Chân trời sáng tạo
- Giải sbt Tin học 7 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 7 – Chân trời sáng tạo
- Giải sgk Âm nhạc 7 – Chân trời sáng tạo