Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác

Với giải bài tập Toán lớp 11 Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 Bài 1.

1 15,327 17/09/2024


Giải Toán 11 Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Bài giảng Toán 11 Bài 1: Góc lượng giác. Giá trị lượng giác của góc lượng giác

Giải Toán 11 trang 5 Tập 1

Hoạt động 1 trang 5 Toán 11 Tập 1: Nêu định nghĩa góc trong hình học phẳng.

Lời giải:

Góc là hình gồm hai tia chung gốc. Mỗi góc có một số đo, đơn vị đo góc là độ hoặc radian.

Số đo của mỗi góc không vượt quá 180

Giải Toán 11 trang 6 Tập 1

Luyện tập 1 trang 6 Toán 11 Tập 1: Hãy hoàn thành bảng chuyển đổi số đo độ và số đo radian của một số góc sau.

Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác (ảnh 1)

Lời giải:

Ta có bảng chuyển đổi số đo độ và số đo radian của một số góc sau:

Độ

18

2π9.180π=40

72

5π6.180π=150

Radian

18.π180=π10

2π9

72.π180=2π5

5π6

Hoạt động 2 trang 6 Toán 11 Tập 1: So sánh chiều quay của kim đồng hồ với:

a) Chiều quay từ tia Om đến tia Ox trong Hình 3a.

b) Chiều quay từ tia Om đến tia Oy trong Hình 3b.

Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác (ảnh 1)

Lời giải:

a) Chiều quay từ tia Om đến tia Ox trong Hình 3a là chiều quay ngược chiều kim đồng hồ

b) Chiều quay từ tia Om đến tia Oy trong Hình 3b là chiều quay cùng chiều kim đồng hồ.

Giải Toán 11 trang 7 Tập 1

Luyện tập trang 7 Toán 11 Tập 1: Đọc tên góc lượng giác, tia đầu và tia cuối của góc lượng giác trong Hình 4b.

Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác (ảnh 1)

Lời giải:

Trong Hình 4b, góc lượng giác là (Oz,Ot) với tia đầu là tia Oz và tia cuối là tia Ot

Hoạt động 3 trang 7 Toán 11 Tập 1:

a) Trong Hình 5a, tia Om quay theo chiều dương đúng một vòng. Hỏi tia đó quét nên một góc bao nhiêu độ?

b) Trong Hình 5b, tia Om quay theo chiều dương ba vòng và một phần tư vòng ( tức là 314vòng). Hỏi tia đó quét nên một góc bao nhiêu độ?

c) Trong Hình 5x, toa Om quay theo chiều âm đúng một vòng. Hỏi tia đó quét nên một góc bao nhiêu độ?

Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác (ảnh 1)

Lời giải:

a) Trong Hình 5a, tia Om quay theo chiều dương đúng một vòng. Tia đó quét nên một góc 360

b) Trong Hình 5b, tia Om quay theo chiều dương ba vòng và một phần tư vòng ( tức là 314vòng). Tia đó quét nên một góc 3.360+14360=1170

c) Trong Hình 5x, toa Om quay theo chiều âm đúng một vòng. Tia đó quét nên một góc -360

Giải Toán 11 trang 8 Tập 1

Luyện tập 3 trang 8 Toán 11 Tập 1: Hãy biểu diễn trên mặt phẳng góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo 5π4

Lời giải:

Ta có 5π4=π+(π4). Góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo 5π4 được biểu diễn ở hình sau:

Luyện tập 3 trang 8 Toán 11 Tập 1 | Cánh diều Giải Toán 11 (ảnh 1)

Hoạt động 4 trang 8 Toán 11 Tập 1: Trong Hình 7, hai góc lượng giác (Ou, Ov), (Ou,Ov)có tia đầu trùng nhau OuOu, tia cuối trùng nhau OvOv. Nêu dự đoán về mối liên hệ giữa số đo của hai góc lượng giác trên.

Toán 11 Bài 1 (Cánh diều): Góc lượng giác. Giá trị lượng giác của góc lượng giác (ảnh 1)

Lời giải:

Quan sát Hình 7 ta thấy:

• Tia Om quay (chỉ theo chiều dương) xuất phát từ tia Ou đến trùng với tia Ov rồi quay tiếp một số vòng đến trùng với tia cuối Ov;

• Tia Om quay (chỉ theo chiều dương) xuất phát từ tia OuOu đến trùng với tia OvOvrồi quay tiếp một số vòng đến trùng với tỉa cuối OvOv.

Như vậy, sự khác biệt giữa hai góc lượng giác (Ou, Ov) và (O’u’, O’v’) chính là số vòng quay quanh điểm O. Vì vậy, sự khác biệt giữa số đo của hai góc lượng giác đó chính là bội nguyên của 360 khi hai góc đó tính theo đơn vị độ (hay bội nguyên của 2π rad khi hai góc đó tính theo đơn vị radian).

Giải Toán 11 trang 9 Tập 1

Hoạt động 6 trang 10 Toán 11 Tập 1:

a) Trong mặt phẳng tọa độ (định hướng) Oxy, hãy vẽ đường tròn tâm O và bán kính bằng 1

b) Hãy nêu chiều dương, chiều âm trên đường tròn tâm O với bán kính bằng 1

Lời giải:

a) Đường tròn tâm O có bán kính bằng 1 (hình vẽ):

Hoạt động 6 trang 10 Toán 11 Tập 1 | Cánh diều Giải Toán 11

b) Chiều dương là chiều ngược với chiều quay của kim đồng hồ; chiều âm là chiều quay của kim đồng hồ.

Hoạt động 6 trang 10 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Luyện tập 6 trang 10 Toán 11 Tập 1: Xác định điểm N trên đường tròn lượng giác sao cho (OA,ON)=π3

Lời giải:

Ta có (OA, ON) = π3 là góc lượng giác có tia đầu là tia OA, tia cuối là tia ON và quay theo chiều âm (chiều quay của kim đồng hồ) một góc π3 .

Điểm N trên đường tròn lượng giác sao cho (OA, ON) = π3 được biểu diễn như hình dưới đây:

Luyện tập 6 trang 10 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Hoạt động 7 trang 10 Toán 11 Tập 1:

a) Xác định điểm M trên đường tròn lượng giác sao cho (OA,OM)=60

b) So sánh hoành độ của điểm M với cos60; tung độ của điểm M với sin60

Lời giải:

a) Ta có (OA, OM) = 60° là góc lượng giác có tia đầu là tia OA, tia cuối là tia OM và quay theo chiều dương một góc 60°.

Điểm M trên đường tròn lượng giác sao cho (OA, OM) = 60° được biểu diễn như hình vẽ dưới đây:

Hoạt động 7 trang 10 Toán 11 Tập 1 | Cánh diều Giải Toán 11

b) Ta có M12;32 và cos600=12;sin 600=32

Do đó xM = cos60° và yM = sin60°.

Giải Toán 11 trang 11 Tập 1

Luyện tập 7 trang 11 Toán 11 Tập 1: Tìm giác trị lượng giác của góc lượng giác β=π4

Lời giải:

sin(π4)=22;cos(π4)=22;tan(π4)=12;cot(π4)=2

Hoạt động 8 trang 11 Toán 11 Tập 1: Xét dấu các giá trị lượng giác của góc lượng giác α=30

Lời giải:

cos(30)=32>0sin(30)=12<0tan(30)=33<0cot(30)=3<0

Luyện tập 8 trang 11 Toán 11 Tập 1: Xét dấu các giá trị lượng giác của góc lượng giác α=5π6

Lời giải:

Do π2<5π6<π nên

cos(5π6)<0sin(5π6)>0tan(5π6)<0cot(5π6)<0

Hoạt động 9 trang 11 Toán 11 Tập 1: Cho góc lượng giác α. So sánh

a) cos2α+sin2α và 1

b) tanα.cotα và 1 với cosα0;sinα0

c) 1+tan2α1cos2α với cosα0

d) 1+cot2α1sin2α với sinα0

Lời giải:

a) cos2α+sin2α=1

b) tanα.cotα=sinαcosα.cosαsinα=1

c) sin2α+cos2αcos2α=sin2αcos2α+cos2αcos2α=tan2α+1

d) 1sin2α=sin2α+cos2αsin2α=sin2αsin2α+cos2αsin2α=1+cot2α

Giải Toán 11 trang 12 Tập 1

Luyện tập 9 trang 12 Toán 11 Tập 1: Cho góc lượng giác αsao cho π<α<3π2sinα=45. Tìm cosα.

Lời giải:

cos2α+sin2α=1 nên cos2α=1sin2α=1(45)2=925

Do π<α<3π2 nên cosα<0. Suy ra cosα=35

Hoạt động 10 trang 12 Toán 11 Tập 1: Tìm các giá trị lượng giác của góc lượng giác α=45

Lời giải:

sin(45)=22;cos(45)=22;tan(45)=12;cot(45)=2

a) cos2π8+cos23π8

b) tan1.tan2.tan45.tan88.tan89

Lời giải:

a)

cos2π8+cos23π8=cos2π8+cos2(π2π8)=cos2π8+sin2π8=1

b)

tan1.tan2.tan45.tan88.tan89=(tan1.tan89).(tan2.tan88).tan45=(tan1.cot1).(tan2.cot2).tan45=1

Luyện tập 12 trang 14 Toán 11 Tập 1: Dùng máy tính cầm tay để tính ;

a) tan(75);b) cot(π5)

Lời giải:

a) tan(75)=23

b) cot(π5)1,376

Giải Toán 11 trang 15 Tập 1

Bài 1 trang 15 Toán 11 Tập 1: Gọi M, N, P là các điểm trên đường tròn lượng giác sao cho số đo của các góc lượng giác (OA,OM),(OA,ON),(OA,OP) lần lượt bằng π2;7π6;π6. Chứng minh rằng tam giác MNP là tam giác đều.

Lời giải:

• Ta có OA,OM=α=π2 là góc lượng giác có tia đầu là tia OA, tia cuối là tia OM và quay theo chiều dương một góc π2, khi đó tia OM trùng với tia OB.

Điểm M trên đường tròn lượng giác sao cho OA,OM=α=π2 được biểu diễn trùng với điểm B.

• Ta có (OA,ON)=β=7π6=π+π6 là góc lượng giác có tia đầu là tia OA, tia cuối là tia ON và quay theo chiều dương một góc 7π6.

• Ta có (OA,OP) = γ=π6 là góc lượng giác có tia đầu là tia OA, tia cuối là tia OP và quay theo chiều âm một góc π6.

Ba điểm M, N, P trên đường tròn lượng giác được biểu diễn nhu hình vẽ dưới đây:

Bài 1 trang 15 Toán 11 Tập 1 | Cánh diều Giải Toán 11

Bài 2 trang 15 Toán 11 Tập 1: Tính các giá trị lượng giác của mỗi góc sau: 225;225;1035;5π3;19π2;159π4

Lời giải:

cos(225)=cos(180+45)=cos(45)=22sin(225)=sin(180+45)=sin(45)=22tan(225)=sin(225)cos(225)=1cot(225)=1tan(225)=1

cos(225)=cos(225)=cos(180+45)=cos(45)=22sin(225)=sin(225)=sin(180+45)=sin(45)=22tan(225)=sin(225)cos(225)=1cot(225)=1tan(225)=1

cos(1035)=cos(1035)=cos(6.36045)=cos(45)=cos(45)=22sin(1035)=sin(1035)=sin(6.36045)=sin(45)=sin(45)=22tan(1035)=sin(1035)cos(1035)=1cot(1035)=1tan(1035)=1

cos(5π3)=cos(π+2π3)=cos(2π3)=12sin(5π3)=sin(π+2π3)=sin(2π3)=32tan(5π3)=sin(5π3)cos(5π3)=3cot(5π3)=1tan(5π3)=33

cos(19π2)=cos(8π+3π2)=cos(3π2)=cos(π+π2)=cos(π2)=0sin(19π2)=sin(8π+3π2)=sin(3π2)=sin(π+π2)=sin(π2)=1tan(19π2)cot(19π2)=cos(19π2)sin(19π2)=0

cos(159π4)=cos(159π4)=cos(40.ππ4)==cos(π4)=cos(π4)=22sin(159π4)=sin(159π4)=sin(40.ππ4)=sin(π4)=sin(π4)=22tan(159π4)=cos(159π4)sin(159π4)=1cot(159π4)=1tan(159π4)=1

Bài 3 trang 15 Toán 11 Tập 1: Tính các giá trị lượng giác (nếu có) có mỗi góc sau:

a) π3+k2π(kZ)

b) kπ(kZ)

c) π2+kπ(kZ)

d) π4+kπ(kZ)

Lời giải:

a)

cos(π3+k2π)=cos(π3)=12sin(π3+k2π)=sin(π3)=32tan(π3+k2π)=sin(π3+k2π)cos(π3+k2π)=3cot(π3+k2π)=1tan(π3+k2π)=33

b)

cos(kπ)=[1;k=2n+11;k=2nsin(kπ)=0tan(kπ)=sin(kπ)cos(kπ)=0cot(kπ)

c)

cos(π2+kπ)=0sin(π2+kπ)=[sin(π2)=1;k=2n+1sin(π2)=1;k=2ntan(π2+kπ)cot(π2+kπ)=0

d)

Với k=2n+1 thì

cos(π4+kπ)=cos(π4+(2n+1)π)=cos(π4+2nπ+π)=cos(π4+π)=cos(π4)=22sin(π4+kπ)=sin(π4+(2n+1)π)=sin(π4+2nπ+π)=sin(π4+π)=sin(π4)=22tan(π4+kπ)=1cot(π4+kπ)=1

Với k=2n thì

cos(π4+kπ)=cos(π4+2nπ)=cos(π4)=22sin(π4+kπ)=sin(π4+2nπ)=sin(π4)=22tan(π4+kπ)=1cot(π4+kπ)=1

Bài 4 trang 15 Toán 11 Tập 1: Tính các giá trị lượng giác của góc α trong mỗi trường hợp sau:

a) sinα=154 với π2<α<π

b) cosα=23 với π<α<0

c) tanα=3 với π<α<0

d) cotα=2 với 0<α<π

Lời giải:

a) Ta có cos2α+sin2α=1

sinα=154 nên cos2α+(154)2=1cos2α=116

Lại có π2<α<π nên cosα<0cosα=14

Khi đó tanα=sinαcosα=15;cotα=1tanα=115

b)

Ta có cos2α+sin2α=1

cosα=23 nên sin2α+(23)2=1sin2α=59

Lại có π<α<0 nên sinα<0sinα=53

Khi đó tanα=sinαcosα=52;cotα=1tanα=25

c)

Ta cótanα=3 nên

cotα=1tanα=13

1cos2α=1+tan2α=1+32=10cos2α=110

cos2α+sin2α=1sin2α=910

Với π<α<0thì sinα<0sinα=910

Với π<α<π2thì cosα<0cosα=110

π2α<0thì cosα>0cosα=110

d)

Ta cócotα=2 nên

tanα=1cotα=12

1sin2α=1+cot2α=1+(2)2=5sin2α=15

cos2α+sin2α=1cos2α=45

Với 0<α<πthì sinα>0sinα=15

Với 0<α<π2thì cosα>0cosα=45

π2α<πthì cosα<0cosα=45

Bài 5 trang 15 Toán 11 Tập 1: Tính

a) A=sin25+sin210+sin215+...+sin285 (17 số hạng)

b) B=cos5+cos10+cos15+...+cos175 (35 số hạng)

Lời giải:

a)

A=sin25+sin210+sin215+...+sin285=(sin25+sin285)+(sin215+sin275)+...+(sin235+sin255)+sin245=(sin25+cos25)+(sin215+cos215)+...+(sin235+cos235)+sin245=1+1+...+1+12=172

b)

B=cos5+cos10+cos15+...+cos175=(cos5+cos175)+(cos10+cos170)+...+(cos85+cos95)+cos90=0+0+....+0+0=0

Bài 6 trang 15 Toán 11 Tập 1: Một vệ tinh được định vị tại vị trí A trong không gian. Từ vị trí A, vệ tinh bắt đầu chuyển động quanh Trái Đất theo quỹ đạo là đường tròn với tâm là tâm O của Trái Đất, bán kính 9000 km. Biết rằng vệ tinh chuyển động hết một vòng của quỹ đạo trong 3 giờ

a) Hãy tính quãng đường vệ tinh đã chuyển độ được sau: 1h; 3h; 5h

b) Vệ tinh chuyển động được quãng đường 200 000 km sau bao nhiêu giờ (làm tròn kết quả đến hàng đơn vị?

Lời giải:

a) Chiều dài một vòng của quỹ đạo là : 9000.2.π (km)

Quãng đường vệ tinh đã chuyển độ được sau 1 giờ là

9000.2.π3=6000π(km)

Quãng đường vệ tinh đã chuyển độ được sau 3 giờ là 18000π(km)

Quãng đường vệ tinh đã chuyển độ được sau 1 giờ là

9000.2.π3.5=30000π(km)

b)Vệ tinh chuyển động được quãng đường 200 000 km sau số giờ là : 2000006000π11( giờ)

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác

I. Góc lượng giác

1. Góc hình học và số đo của chúng

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 1)

*Nhận xét:

- Đơn vị đo góc: độ hoặc radian (rad).

- Ta có: 180o=πrad, do đó 1 rad =(180π)o, 1o=(π180)rad.

- Người ta thường không viết chữ radian hay rad sau số đo góc.

VD: π2rad cũng được viết là π2.

2. Góc lượng giác và số đo của chúng

a, Khái niệm

- Cho 2 tia Ou, Ov. Nếu tia Om quay chỉ theo chiều dương (hay chỉ theo chiều âm) xuất phát từ Ou đến trùng với tia Ov thì ta nói: Tia Om quét một góc lượng giác với tia đầu Ou và tia cuối Ov.

Kí hiệu: (Ou, Ov).

- Mỗi góc lượng giác được xác định bởi tia đầu Ou, tia cuối Ov và số đo của góc đó.

b, Tính chất

- Cho hai góc lượng giác = và (O’u’,O’v’) có tia đầu trùng nhau (OuOu), tia cuối trùng nhau (OvOv).

Khi đó, nếu sử dụng đợn vị đo là độ thì ta có:

(Ou,Ov)=(Ou,Ov)+k360o,kZ.

Nếu sử dụng đơn vị đo là radian thì:

(Ou,Ov)=(Ou,Ov)+k2π,kZ.

* Hệ thức Chasles

Với 3 tia Ou, Ov, Ow bất kì ta có:

(Ou,Ov) + (Ov, Ow) = (Ou,Ow) +k2π,kZ.

II. Giá trị lượng giác của góc lượng giác

1. Đường tròn lượng giác

Trong mặt phẳng toa độ đã được định hướng Oxy, lấy điểm A(1;0). Đường tròn tâm O, bán kính OA = 1 được gọi là đường tròn lượng giác (hay đường tròn đơn vị) gốc A.

2. Giá trị lượng giác của góc lượng giác

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 2)

- Trục tung là trục sin, trục hoành là trục côsin.

- Điểm M(x;y) nằm trên đường tròn như hình vẽ. Khi đó:

x=cosα, y=sinα.

tanα=sinαcosα=yx(x0)

cotα=cosαsinα=xy(y0)

* Dấu của các giá trị lượng giác của góc α

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 3)

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 4)

* Các công thức lượng giác cơ bản

sin2α+cos2α=11+tan2α=1cos2α(απ2+kπ,kZ)1+cot2α=1sin2α(αkπ,kZ)tanα.cotα=1(αkπ2,kZ)

3. Giá trị lượng giác của các góc có liên quan đặc biệt

  • Hai góc đối nhau αα

sin(α)=sinαcos(α)=cosαtan(α)=tanαcot(α)=cotα

  • Hai góc bù nhau (απ-α)

sin(πα)=sinαcos(πα)=cosαtan(πα)=tanαcot(πα)=cotα

  • Hai góc phụ nhau (απ2-α)

sin(π2α)=cosαcos(π2α)=sinαtan(π2α)=cotαcot(π2α)=tanα

  • Hai góc hơn kém π(απ + α)

sin(π+α)=sinαcos(π+α)=cosαtan(π+α)=tanαcot(π+α)=cotα

4. Sử dụng máy tính cầm tay để tính giá trị của một góc lượng giác

Đơn vị độ:

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 5)

Đơn vị radian:

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác (Chân trời sáng tạo 2023) hay, chi tiết | Toán lớp 11 (ảnh 6)

Lý thuyết Góc lượng giác. Giá trị lượng giác của góc lượng giác – Toán 11 Cánh diều (ảnh 1)

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

1 15,327 17/09/2024


Xem thêm các chương trình khác: