Toán 11 Bài 4 (Cánh diều): Phương trình, bất phương trình mũ và lôgarit
Với giải bài tập Toán lớp 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 Bài 4.
Giải Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit
Hỏi sau bao nhiêu năm, dân số sẽ gấp đôi dân số của năm lấy làm mốc tính?
Lời giải:
Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:
Để dân số S’ gấp đôi dân số của năm lấy làm mốc tính S thì S = 2Anên ta có:
Ta có 2A = A . ert
Suy ra ert = 2
Do đó rt = ln2
Nên
Vậy sau thì dân số sẽ gấp đôi dân số của năm lấy làm mốc tính.
I. Phương trình mũ và phương trình Lôgarit
Hoạt động 1 trang 48 Toán 11 Tập 2: Trong bài toán ở phần mở đầu, giả sử r = 1,14% / năm.
a) Viết phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu.
b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của luỹ thừa?
Lời giải:
a) Ta có công thức S = A . ert, trong đó:
⦁ A là dân số của năm lấy làm mốc tính;
⦁ S là dân số sau t năm;
⦁ r là tỉ lệ tăng dân số hằng năm, và r = 1,14%.
Để dân số sau t năm gấp đôi dân số ban đầu thì S = 2A
Suy ra 2A = A . e1,14%t nên e0,0114t = 2.
Vậy phương trình thể hiện dân số sau t năm gấp đôi dân số ban đầu là e0,0114t = 2.
b) Phương trình vừa tìm được có ẩn là t nằm ở số mũ của lũy thừa.
Luyện tập 1 trang 48 Toán 11 Tập 2: Cho hai ví dụ về phương trình mũ.
Lời giải:
Hai ví dụ về phương trình mũ là: 3x+1 = 9 và 52x = 25.
Hoạt động 2 trang 48 Toán 11 Tập 2:
a) Vẽ đồ thị hàm số y = 3x và đường thẳng y = 7.
Lời giải:
a)⦁ Xét hàm số y = 3x có cơ số 3 > 1 nên ta có bảng biến thiên như sau:
Đồ thị của hàm số y = 3x là một đường cong liền nét đi qua các điểm (hình vẽ).
⦁ Xét hàm số y = 7 có đồ thị là đường thẳng đi qua các điểm có tung độ bằng 7 (hình vẽ).
b) Đồ thị hàm số y = 3x cắt đường thẳng y = 7 tại 1 điểm.
Vậy phương trình 3x = 7 có 1 nghiệm.
Luyện tập 2 trang 49 Toán 11 Tập 2: Giải mỗi phương trình sau:
a) 916 – x = 27x + 4; b) 16x – 2 = 0,25 . 2–x + 4.
Lời giải:
a) 916 – x = 27x + 4
⇔32(16 – x) = 33(x + 4)
⇔ 2(16 – x) = 3(x + 4)
⇔ 32 – 2x = 3x + 12
⇔ –5x = –20
⇔ x = 4.
Vậy phương trình đã cho có nghiệm là x = 4.
b) 16x – 2 = 0,25 . 2–x + 4
⇔24(x – 2) = 0,25 . 2–x + 4
⇔24(x – 2): 2–x + 4= 0,25
⇔25x – 12= 2−2
⇔ 5x – 12 = −2
⇔ 5x = 10
⇔ x = 2.
Vậy phương trình đã cho có nghiệm là x = 2.
a) Viết phương trình thể hiện nồng độ x của hydrogen [H+] trong mẫu nước sông đó.
b) Phương trình vừa tìm được có ẩn là gì và nằm ở vị trí nào của lôgarit?
Lời giải:
a) Ta có pH = 6,1 suy ra – log[H+] = 6,1 ⇔– logx = 6,1.
Vậy phương trình thể hiện nồng độ x của hydrogen [H+] trong mẫu nước sông đó là:
– logx = 6,1.
b) Phương trình vừa tìm được có ẩn x nằm trong biểu thức dưới dấu lôgarit.
Luyện tập 3 trang 50 Toán 11 Tập 2: Cho hai ví dụ về phương trình lôgarit.
Lời giải:
Hai ví dụ về phương trình lôgarit là: log2(x + 3) = 8 và log3(x2 + x + 1) = 2.
Hoạt động 4 trang 50 Toán 11 Tập 2:
a) Vẽ đồ thị hàm số y = log4x và đường thẳng y = 5.
Lời giải:
a)⦁ Xét hàm số y = log4x có cơ số 4 > 1 nên ta có bảng biến thiên như sau:
Đồ thị của hàm số y = log4x là một đường cong liền nét đi qua các điểm (hình vẽ).
⦁ Xét hàm số y = 5 có đồ thị là đường thẳng đi qua các điểm có tung độ bằng 5 (hình vẽ).
b) Từ bảng biến thiên của hàm số y = log4x ta thấy đường thẳng y = 5 cắt đồ thị hàm số y = log4x tại 1 điểm.
Khi đó phương trình log4x = 5 có 1 nghiệm.
Luyện tập 4 trang 51 Toán 11 Tập 2: Giải mỗi phương trình sau:
Lời giải:
a)
Vậy phương trình có nghiệm x=3.
b) log2x + log4x = 3
Vậy phương trình có nghiệm x=4.
II. Bất phương trình mũ và bất phương trình Lôgarit
Lời giải:
Từ đồ thị hàm số ở Hình 11 ta thấy hàm số này nghịch biến trên ℝ.
Dựa vào đồ thị ta thấy: đồ thị hàm số ở phía trên đường thẳng y = 2 khi và chỉ khi x < −1.
Do đó
Luyện tập 5 trang 52 Toán 11 Tập 2: Cho hai ví dụ về bất phương trình mũ cơ bản.
Lời giải:
Hai ví dụ về bất phương trình mũ cơ bản là 3x < 27 và 4x ≥ 16.
Luyện tập 6 trang 52 Toán 11 Tập 2: Giải mỗi bất phương trình sau:
Lời giải:
Ta có:
a) 7x+3 < 343
⇔x + 3 < log7343
⇔x + 3 < 3
⇔x < 0
Vậy tập nghiệm của bất phương trình là (–∞; 0).
b)
Vậy tập nghiệm của bất phương trình là .
Lời giải:
Hàm số y = log2x đồng biến trên tập xác định (0; +∞).
Dựa vào đồ thị ta thấy đồ thị hàm số y = log2x ở phía trên đường thẳng y = 1 khi và chỉ khi x > 2.
Vậy log2x > 1 ⇔ x > 2.
Luyện tập 7 trang 53 Toán 11 Tập 2: Cho hai ví dụ về bất phương trình logarit cơ bản.
Lời giải:
Hai ví dụ về bất phương trình logarit cơ bản là logx > 1 và log3x≤ 6.
Luyện tập 8 trang 54 Toán 11 Tập 2: Giải mỗi bất phương trình sau:
Lời giải:
a) log3x < 2
⇔ 0 < x < 32
⇔ 0 < x < 9
Vậy tập nghiệm của bất phương trình là (0; 9).
b)
⇔ 0 < x – 5 ≤ 16
⇔ 5 < x ≤ 21
Vậy tập nghiệm của bất phương trình là (5; 21].
Bài tập
Bài 1 trang 54 Toán 11 Tập 2: Giải mỗi phương trình sau:
a) (0,3)x–3 = 1; b) 53x–2 = 25;
e) log5(3x – 5) = log5(2x + 1); g)
Lời giải:
a) (0,3)x–3 = 1⇔ x – 3 = log0,31 ⇔x – 3 = 0 ⇔x = 3.
Vậy phương trình đã cho có nghiệm là x=3.
b) 53x–2 = 25
⇔53x–2 = 52
⇔ 3x – 2 = 2
Vậy phương trình đã cho có nghiệm là
c) 9x–2 = 243x+1⇔32x–4 = 35x+5
⇔ 2x – 4 = 5x + 5 ⇔ 3x = –9 ⇔ x = –3
Vậy phương trình đã cho có nghiệm là x = –3.
d)
Vậy phương trình đã cho có nghiệm là x=7.
e) log5(3x – 5) = log5(2x + 1)
Vậy phương trình đã cho có nghiệm là x=6.
f)
Vậy phương trình đã cho có nghiệm là x=10.
Bài 2 trang 55 Toán 11 Tập 2: Giải mỗi bất phương trình sau:
c) 4x+3 ≥ 32x; d) log(x – 1) < 0;
Lời giải:
a)
Vậy bất phương trình đã cho có tập nghiệm là (–5; +∞).
b)
Vậy bất phương trình đã cho có tập nghiệm là [2; +∞).
c) 4x+3 ≥ 32x ⇔ x + 3 ≥ log432x ⇔ x + 3 ≥ xlog432
Vậy bất phương trình đã cho có tập nghiệm là (−∞; 2].
d) log(x – 1) < 0 ⇔0 < x – 1 < 100
⇔0 < x – 1 < 1 ⇔1 < x < 2
Vậy bất phương trình đã cho có tập nghiệm là (1; 2).
e)
Vậy bất phương trình đã cho có tập nghiệm là
g) ln(x + 3) ≥ ln(2x – 8)
Vậy bất phương trình đã cho có tập nghiệm là (4; 11].
Lời giải:
Công thức tính số tiền rút được (cả gốc và lãi) sau n năm là: 100(1 + x%)n (triệu đồng).
Sau 3 năm, người đó rút được cả gốc và lãi là 119,1016 triệu đồng nên ta có:
100(1 + x%)3 = 119,1016
(thỏa mãn x > 0).
Vậy lãi xuất là 6% / năm.
Lời giải:
Ta có công thức tính mức cường độ âm L (đơn vị dB) là
Do giá trị cực đại của mức cường độ âm mà tai người có thể chịu đựng được là 130dB nên ta có L ≤ 130
Vậy cường độ âm mà tai người có thể chịu đựng được là 10 W/m2.
Lý thuyết Phương trình mũ, bất phương trình mũ và lôgarit
1. Phương trình mũ
Phương trình mũ cơ bản ẩn x có dạng .
- Nếu thì phương trình vô nghiệm.
- Nếu thì phương trình có nghiệm duy nhất .
Với thì
- với b >0;
- .
2. Phương trình lôgarit
Phương trình lôgarit cơ bản ẩn x có dạng . Phương trình có nghiệm duy nhất .
Với thì
- .
3. Bất phương trình mũ
Xét bất phương trình mũ .
- Nếu , tập nghiệm của bất phương trình là ;
- Nếu b > 0, a > 1 thì nghiệm của bất phương trình là ;
- Nếu b > 0, 0 < a < 1 thì nghiệm của bất phương trình là .
Các bất phương trình mũ cơ bản khác được giải tương tự.
4. Bất phương trình lôgarit
Xét bất phương trình lôgarit .
- Nếu a > 1 thì nghiệm của bất phương trình là .
- Nếu 0 < a < 1 thì nghiệm của bất phương trình là 0 < x < .
Các bất phương trình lôgarit cơ bản khác được giải tương tự.
Sơ đồ tư duy Phương trình mũ, bất phương trình mũ và lôgarit
Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:
Bài tập cuối chương 5 trang 25
Bài 1: Phép tính lũy thừa với số mũ thực
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều