Toán 11 Bài 6 (Cánh diều): Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Với giải bài tập Toán lớp 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 Bài 6.
Giải Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Hình lăng trụ đứng với đáy là đa giác, đặc biệt là đa giác đều, có tính chất gì (Hình 97)?
Lời giải:
Quan sát Hình 79 ta thấy hình lăng trụ đứng với đáy là đa giác đều có tính chất sau:
⦁ Hai đáy là hai đa giác đều bằng nhau, các cạnh đáy bằng nhau.
⦁ Cạnh bên bằng nhau và cùng vuông góc với mặt đáy.
⦁ Các mặt bên là các hình chữ nhật, mặt phẳng chứa mặt bên vuông góc với mặt phẳng đáy.
I. Hình lăng trụ đứng, hình lăng trụ đều
Lời giải:
Do: A’B’BA là hình chữ nhật nên AA’ ⊥ AB và AA’ // BB’;
A’C’CA là hình chữ nhật nên AA’ ⊥ AC và AA’ // CC’.
Ta có: AA’ ⊥ AB, AA’ ⊥ AC và AB ∩ AC = A trong (ABC).
Suy ra AA’ ⊥ (ABC).
Hơn nữa: AA’ // BB’ và AA’ // CC’.
Suy ra BB’ ⊥ (ABC) và CC’ ⊥ (ABC).
Chứng minh tương tự ta được: AA’ ⊥ (A’B’C’), BB’ ⊥ (A’B’C’) và CC’ ⊥ (A’B’C’).
Vậy mỗi cạnh bên của lăng trụ đó đều vuông góc với các mặt đáy.
II. Hình chóp đều, hình chóp cụt đều
Lời giải:
Do ABCD là hình vuông nên do đó tam giác ABC vuông tại B.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = a2 + a2 = 2a2.
Suy ra
Do A’A ⊥ (ABCD) và AC ⊂ (ABCD) nên A’A ⊥ AC.
Áp dụng định lí Pythagore vào tam giác A’AC vuông tại A (vì A’A ⊥ AC) có:
A’C2 = A’A2 + AC2.
Suy ra
Vậy độ dài đường chéo của hình lập phương đó bằng
Lời giải:
Do S.ABC là hình chóp tam giác đều nên SA = SB = SC (các cạnh bên bằng nhau).
Gọi O là chân đường cao của hình chóp tam giác đều S.ABC.
Do SO ⊥ (ABC) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC.
Xét ∆SAO và ∆SBO có:
SO là cạnh chung;
SA = SB (chứng minh trên)
Do đó ∆SAO = ∆SBO (cạnh huyền – cạnh góc vuông)
Suy ra (hai góc tương ứng)
Chứng minh tương tự, ta cũng có∆SAO = ∆SCO nên
Từ đó ta có:
Vậy các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.
Lời giải:
Quan sát Hình 87a, 87b ta có thể dự đoán các đường thẳng chứa cạnh A1B1, A2B2, A3B3, A4B4 đồng quy tại một điểm.
Lời giải:
⦁ Xét ∆SAB có: A’, B’ lần lượt là trung điểm của SA, SB nên A’B’ là đường trung bình của ∆SAB. Do đó A’B’ // AB.
Mà AB ⊂ (ABC).
Suy ra A’B’ // (ABC).
⦁ Chứng minh tương tự, ta cũng có B’C’ // (ABC).
Ta có: A’B’ // (ABC), B’C’ // (ABC) và A’B’ ∩ B’C’ = B’ trong (A’B’C’).
Suy ra (A’B’C’) // (ABC).
Mà S.ABC là hình chóp đều.
Vậy phần hình chóp đã cho giới hạn bởi hai mặt phẳng (ABC) và (A’B’C’) là hình chóp cụt đều.
III. Thể tích của một số hình khối
Lời giải:
Thể tích của khối lăng trụ đứng tam giác, tứ giác đều được tính bằng công thức:
V = S.h.
Trong đó S là diện tích đáy và h là chiều cao khối lăng trụ đứng tam giác.
Lời giải:
Gọi H là trung điểm của AB nên
Vì hình chiếu của A’ trên mặt phẳng (ABC) là trung điểm của AB nên A’H ⊥ (ABC).
Ta có: A’H ⊥ (ABC) và AB ⊂ (ABC) nên A’H ⊥ AB.
Áp dụng định lí Pythagore vào tam giác A’AH vuông tại H (do A’H ⊥ AB) có:
A’A2 = A’H2 + AH2
Do đó
Xét ∆ABC đều có: CH là đường trung tuyến (do H là trung điểm của AB) nên CH cũng là đường cao của tam giác ABC hay CH ⊥ AB.
Áp dụng định lí Pythagore vào tam giác ACH vuông tại H (do CH ⊥ AB) có:
AC2 = AH2 + CH2
Do đó
Khi đó, diện tích tam giác ABC có đường cao là:
(đvdt)
Thể tích của khối lăng trụ ABC.A’B’C’ có chiều cao và diện tích đáy là:
Lời giải:
Gọi M là trung điểm của BC, O là trọng tâm tam giác BCD.
Vì ABCD là hình tứ diện đều nên BCD là tam giác đều.
Mà O là trọng tâm tam giác BCD nên O cũng là tâm đường tròn ngoại tiếp tam giác BCD.
Do đó AO ⊥ (BCD).
Xét tam giác đều BCD có: DM là đường trung tuyến (do M là trung điểm của BC) cũng đồng thời là đường cao của tam giác nên DM ⊥ BC.
Do M là trung điểm của BC nên
Áp dụng định lí Pythagore vào tam giác DMC vuông tại M (do DM ⊥ BC) có:
DC2 = DM2 + MC2
Do đó
Vì O là trọng tâm tam giác BCD nên
Do AO ⊥ (BCD) và DO ⊂ (BCD) nên AO ⊥ DO, do đó tam giác ADO vuông tại O.
Áp dụng định lí Pythagore vào tam giác ADO vuông tại O có:
AD2 = AO2 + DO2
Suy ra
Diện tích tam giác BCD đều có đường cao DM là:
(đvdt).
Thể tích của khối tứ diện đều ABCD cạnh a có chiều cao và diện tích đáy là:
(đvtt)
Lời giải:
Một thùng đựng rác có dạng khối chóp cụt tứ giác đều nên ta có hai đáy là hình vuông.
Diện tích đáy lớn là S1 = 32 = 9 (dm2).
Diện tích đáy bé là S2 = 22 = 4 (dm2).
Vậy thể tích của thùng đựng rác có dạng khối chóp cụt tứ giác đều có chiều cao bằng 4 dm diện tích đáy hai đáy S1 = 9 dm2, S2 = 4 dm2 là:
(dm3).
Bài tập
Lời giải:
Quan sát Hình 96a và 96b ta thấy:
⦁ Chiếc đèn treo ở Hình 96a là hình lăng trụ lục giác đều vì có các mặt bên là hình chữ nhật và vuông góc với mặt đáy, mặt đáy là lục giác đều.
⦁ Trạm khảo sát trắc địa là hình chóp cụt tứ giác đều vì có hai đáy là hình vuông và nằm trên hai mặt phẳng song song với nhau; mỗi mặt bên đều là hình thang cân; các đường thẳng chứa cạnh bên đều cùng đi qua một điểm.
Bài 2 trang 115 Toán 11 Tập 2: Cho hình chóp đều S.ABCD có các cạnh bên và các cạnh đáy đều bằng a.
a) Chứng minh rằng các tam giác ASC và BSD là tam giác vuông cân.
b) Gọi O là giao điểm của AC và BD, chứng minh rằng đường thẳng SO vuông góc với mặt phẳng (ABCD).
c) Chứng minh rằng góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 45°.
Lời giải:
a) Do S.ABCD là hình chóp đều nên SA = SB = SC = SD = a.
Vì ABCD là hình vuông nên AC = BC và
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = a2 + a2 = 2a2.
Mà AC = BD nên BD2 = AC2 = 2a2.
⦁ Xét ∆ASC có: SA2 + SC2 = a2 + a2 = 2a2 = AC2.
Nên theo định lí Pythagore đảo ta có tam giác ASC vuông tại S.
Mà SA = SC nên tam giác ASC vuông cân tại S.
⦁ Xét tam giác BSD có: SB2 + SD2 = a2 + a2 = 2a2 = BD2.
Nên theo định lí Pythagore đảo ta có tam giác BSD vuông tại S.
Mà SB = SD nên tam giác BSD vuông cân tại S.
b) Do ABCD là hình vuông và O = AC ∩ BD nên O là trung điểm của AC và BD.
Xét ∆ASC vuông cân tại S có: SO là đường trung tuyến (do O là trung điểm của AC) nên cũng đồng thời là đường cao của tam giác. Do đó SO ⊥ AC.
Xét ∆BSD vuông cân tại S có: SO là đường trung tuyến (do O là trung điểm của BD) nên cũng đồng thời là đường cao của tam giác. Do đó SO ⊥ BD.
Ta có: SO ⊥ AC, SO ⊥ BD và AC ∩ BD = O trong (ABCD).
Do đó SO ⊥ (ABCD).
c) Vì SO ⊥ (ABCD) nên OA là hình chiếu của SA trên (ABCD).
Suy ra góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng góc
Lại có tam giác ASC là tam giác vuông cân tại S nên
Vậy góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 45°.
a) Chứng minh rằng hai mặt phẳng (ACC’A’) và (BDD’B’) vuông góc với nhau.
b) Tính khoảng cách giữa hai đường thẳng AB và C’D’.
Lời giải:
a) Ta có ABCD.A’B’C’D’ là hình lăng trụ đứng nên BB’ ⊥ (ABCD).
Mà AC ⊂ (ABCD) nên BB’ ⊥ AC.
Do ABCD là hình vuông nên AC ⊥ BD.
Ta có: AC ⊥ BB’, AC ⊥ BD và BB’ ∩ BD = B trong (BDD’B’).
Suy ra AC ⊥ (BDD’B’).
Hơn nữa AC ⊂ (ACC’A’).
Từ đó, ta có (ACC’A’) ⊥ (BDD’B’).
b) Vì ABCD.A’B’C’D’ là hình lăng trụ đứng nên C’D’DC là hình chữ nhật.
Do đó CD // C’D’.
Mà CD // AB (do ABCD là hình vuông) nên AB // C’D’.
Khi đó, d(AB, C’D’) = d(B, C’D’). (1)
Vì ABCD.A’B’C’D’ là hình lăng trụ đứng và đáy ABCD là hình vuông nên A’B’C’D’ cũng là hình vuông.
Do đó C’D’ ⊥ B’C’.
Ta có: C’D’ ⊥ B’C’;
C’D’ ⊥ C’C (do C’D’DC là hình chữ nhật);
B’C’ ∩ C’C = C’ trong (BCC’B’).
Suy ra C’D’ ⊥ (B’C’CB).
Mà BC’ ⊂ (B’C’CB) nên C’D’ ⊥ BC’.
Khi đó d(B, C’D’) = BC’. (2)
Từ (1) và (2) ta có: d(AB, C’D’) = BC’.
Do ABCD.A’B’C’D’ là hình lăng trụ đứng nên C’C ⊥ (ABCD).
Khi đó AC là hình chiếu của AC’ trên (ABCD).
Suy ra góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = a2 + a2 = 2a2.
Suy ra
Ta có: C’C ⊥ (ABCD) và AC ⊂ (ABCD) nên C’C ⊥ AC.
Xét tam giác C’AC vuông tại C (do C’C ⊥ AC) có:
Do đó
Do ABCD.A’B’C’D’ là hình lăng trụ đứng nên B’C’CB là hình chữ nhật.
Suy ra C’C ⊥ BC.
Áp dụng định lí Pythagore vào tam giác C’CB vuông tại C (vì C’C ⊥ BC) có:
BC’2 = CC’2 + BC2
Suy ra
Do đó
Vậy khoảng cách giữa hai đường thẳng AB và C’D’ bằng
Lời giải:
Thể thể tích của chiếc bánh chưng có dạng khối hộp chữ nhật với kích thước ba cạnh là 15 cm, 15 cm và 6 cm là:
V = abc = 15.15.6 = 1 350 (cm3).
Lời giải:
Vì đáy của miếng pho mát là tam giác vuông cân có cạnh góc vuông bằng 12 cm nên ta có diện tích đáy là: (cm2).
Thể tích của miếng pho mát có dạng khối lăng trụ đứng với chiều cao 10 cm và diện tích đáy 73 cm2 là:
V = Sh = 72.10 = 720 (cm3).
Khối lượng của miếng pho mát với khối lượng riêng 3 g/cm3 và thể tích 720 cm3 là:
m = 3.720 = 2 160 (g).
Lời giải:
Mô hình hóa đèn đá muối bằng hình chóp tứ giác đều S.ABCD cạnh a.
Vì S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông nên gọi O là giao điểm của AC và BD. Khi đó O là trung điểm của AC, BD và AC = BD.
Suy ra OA = OB = OC = OD.
Như vậy, O là tâm đường tròn ngoại tiếp hình vuông ABCD.
Do đó, O là chân đường cao của hình chóp S.ABCD hay SO ⊥ (ABCD).
Mà AC ⊂ (ABCD) nên SO ⊥ AC.
Do ABCD là hình vuông nên do đó tam giác ABC vuông tại B.
Áp dụng định lí Pythagore trong tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = a2 + a2 = 2a2.
Suy ra Do đó
Áp dụng định lí Pythagore trong tam giác SAO vuông tại O (do SO ⊥ AC) có:
SA2 = AO2 + SO2
Suy ra
Diện tích hình vuông ABCD cạnh a là: SABCD = a2 (đvdt).
Thể tích của khối chóp tứ giác đều S.ABCD có chiều cao và diện tích đáy SABCD = a2 là:
(đvtt).
Vậy thể tích của đèn đá muối cần tìm là
Lời giải:
Mô hình hóa chân tháp của bài toán bằng khối chóp cụt tứ giác đều ABCD.A’B’C’D’, với O, O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.
Như vậy ta có:
⦁ ABCD là hình vuông cạnh 5 có diện tích SABCD = 52 = 25;
⦁ A’B’C’D’ là hình vuông cạnh 2 có diện tích SA’B’C’D’ = 22 = 4;
⦁ Các cạnh bên A’A, B’B, C’C, D’D có độ dài bằng 3;
⦁ OO’ vuông góc với (ABCD) và (A’B’C’D’).
Do ABCD là hình vuông nên do đó tam giác ABC vuông tại B.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = 52 + 52 = 50.
Suy ra
Do đó (do O là tâm hình vuông ABCD).
Do A’B’C’D’ là hình vuông nên do đó tam giác A’B’C’ vuông tại B’.
Áp dụng định lí Pythagore trong tam giác A’B’C’ vuông tại B’ có:
A’C’2 = A’B’2 + B’C’2 = 22 + 22 = 8.
Suy ra
Do đó (do O’ là tâm hình vuông A’B’C’D’).
Dễ thấy: (ABCD) ∩ (A’C’CA) = AC;
(A’B’C’D’) ∩ (A’C’CA) = A’C’.
Mà (ABCD) // (A’B’C’D’).
Suy ra AC // A’C’ hay A’C’CA là hình thang.
Xét hình thang A’C’CA, kẻ C’H ⊥ AC (H ∈ AC).
Vì OO’ ⊥ (ABCD) và AC ⊂ (ABCD) nên OO’ ⊥ AC.
Do đó C’H // OO’ (cùng vuông góc với AC).
Mà O’C’ // OH (do A’C’ // AC)
Suy ra O’C’HO là hình bình hành.
Do đó: OO’ = C’H và
Suy ra
Áp dụng định lí Pythagore trong tam giác C’HC vuông tại H (do C’H ⊥ AC) có:
C’C2 = C’H2 + HC2
Suy ra
Do đó
Thể tích khối chóp cụt tứ giác đều ABCD.A’B’C’D’ với chiều cao và diện tích hai đáy SABCD = 25, SA’B’C’D’ = 4 là:
(m3).
Như vậy ta có thể tích của chân tháp đã cho bằng (m3).
Vì chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3 nên số tiền để mua bê tông tươi làm chân tháp là:
(đồng).
Vậy số tiền để mua bê tông tươi làm chân tháp khoảng 40 538 432 đồng.
Lý thuyết Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
1. Hình lăng trụ đứng. Hình lăng trụ đều
- Hình lăng trụ có cạnh bên vuông góc với mặt đáy được gọi là hình lăng trụ đứng.
- Hình lăng trụ đứng có đáy là đa giác đều gọi là hình lăng trụ đều.
- Hình lăng trụ đứng có đáy là hình bình hành được gọi là hình hộp đứng.
Ví dụ: Hình dưới biểu diễn hình lăng trụ đứng tứ giác ABCD.A'B'C'D'.
Nhận xét:
- Mỗi mặt bên của hình lăng trụ đứng là một hình chữ nhật, mặt phẳng chứa nó vuông góc với mặt đáy.
- Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật.
Hình hộp chữ nhật có 6 mặt là hình chữ nhật.
Nếu mỗi mặt của hình hộp là hình chữ nhật thì hình hộp đó là hình hộp chữ nhật.
Độ dài các đường chéo của hình hộp chữ nhật là bằng nhau.
- Hình lập phương là hình hộp chữ nhật có tất cả các mặt là hình vuông.
Hình lập phương là hình lăng trụ tứ giác đều có cạnh bên bằng cạnh đáy.
2. Hình chóp đều. Hình chóp cụt đều
a) Hình chóp đều
Hình chóp đều là hình chóp có đáy là đa giác đều và các cạnh bên bằng nhau.
Chú ý:
- Hình chóp tam giác đều có cạnh bên bằng cạnh đáy là tứ diện đều.
- Đoạn thẳng nối đỉnh với hình chiếu của đỉnh trên mặt đáy gọi là đường cao.
Ví dụ: Hình dưới đây biểu diễn hình chóp tứ giác đều S.ABCD.
Nhận xét: Chân đường cao của hình chóp đều là tâm đường tròn ngoại tiếp của đáy.
b) Hình chóp cụt đều
Cho hình chóp đều . Mặt phẳng song song với đáy của hình chóp và cắt các cạnh lần lượt tại .
Phần của hình chóp đã cho giới hạn bởi hai mặt phẳng và được gọi là hình chóp cụt đều .
Trong hình chóp cụt đều , ta gọi:
- Các đa giác lần lượt là đáy lớn, đáy nhỏ;
- Các tứ giác là các mặt bên;
- Các đoạn thẳng là các cạnh bên;
- Các cạnh của hai đa giác là các cạnh đáy.
Ví dụ: Hình dưới đây biểu diễn hình chóp cụt tứ giác đều .
Nhận xét:
- Hai đáy của hình chóp cụt đều nằm trên hai mặt phẳng song song và có các cạnh tương ứng song song; dồng thời hai dáy dó là các da giác dều có củng số cạnh;
- Mỗi mặt bên cùa hình chóp cụt đều là một hình thang cân;
- Các đường thẳng chứa cạnh bên của hình chóp cụt đều cùng đi qua một điểm;
- Đoạn thẳng nối tâm của hai đáy vuông góc với hai đáy của hình chóp cụt đều và gọi là đường cao.
3. Thể tích của một số hình khối
Phần không gian được giới hạn bởi một hình lăng trụ (kể cả hình lăng trụ ấy) được gọi là khối lăng trụ. Các khối khác được định nghĩa tương tự.
a) Thể tích của khối lăng trụ
- Chiều cao của khối lăng trụ bằng khoảng cách giữa hai mặt đáy.
- Thể tích của khối lăng trụ được tính theo công thức:
trong đó là chiều cao, là diện tích đáy của khối lăng trụ.
b) Thể tích của khối chóp
- Chiều cao của khối chóp bằng khoảng cách từ đỉnh đến mặt đáy.
- Thể tích của khối chóp được tính theo công thức:
trong đó là chiều cao, là diện tích đáy của khối chóp.
c) Thể tích của khối chóp cụt đều
- Chiều cao của khối chóp cụt đều bằng khoảng cách giữa hai mặt đáy.
- Thể tích của khối chóp cụt đều được tính theo công thức:
trong đó là chiều cao và lần lượt là diện tích hai đáy của khối chóp cụt đều.
Sơ đồ tư duy Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:
Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Bài 4: Hai mặt phẳng vuông góc
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều