Giải Toán 11 trang 114 Tập 2 Cánh diều

Với giải bài tập Toán 11 trang 114 Tập 2 trong Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 trang 114 Tập 2.

1 132 27/12/2023


Giải Toán 11 trang 114 Tập 2

Luyện tập 5 trang 114 Toán 11 Tập 2: Cho khối tứ diện đều ABCD cạnh a. Chứng minh rằng thể tích của khối tứ diện đó bằng a3212.

Lời giải:

Luyện tập 5 trang 114 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Gọi M là trung điểm của BC, O là trọng tâm tam giác BCD.

Vì ABCD là hình tứ diện đều nên BCD là tam giác đều.

Mà O là trọng tâm tam giác BCD nên O cũng là tâm đường tròn ngoại tiếp tam giác BCD.

Do đó AO ⊥ (BCD).

Xét tam giác đều BCD có: DM là đường trung tuyến (do M là trung điểm của BC) cũng đồng thời là đường cao của tam giác nên DM ⊥ BC.

Do M là trung điểm của BC nên MC=BC2=a2.

Áp dụng định lí Pythagore vào tam giác DMC vuông tại M (do DM ⊥ BC) có:

DC2 = DM2 + MC2

Do đó DM=DC2MC2=a2a22=a32.

Vì O là trọng tâm tam giác BCD nên OD=23DM=23.a32=a33.

Do AO ⊥ (BCD) và DO ⊂ (BCD) nên AO ⊥ DO, do đó tam giác ADO vuông tại O.

Áp dụng định lí Pythagore vào tam giác ADO vuông tại O có:

AD2 = AO2 + DO2

Suy ra AO=AD2DO2=a2a332=a2a23=2a23=a63.

Diện tích tam giác BCD đều có đường cao DM là:

SΔBCD=12.DM.BC=12.a32.a=a234 (đvdt).

Thể tích của khối tứ diện đều ABCD cạnh a có chiều cao AO=a63 và diện tích đáy SΔBCD=a234là:

VABCD=13SΔBCD.AO=13.a234.a63=a3212 (đvtt)

Luyện tập 6 trang 114 Toán 11 Tập 2: Một thùng đựng rác có dạng khối chóp cụt tứ giác đều với hai cạnh đáy lần lượt dài 2 dm và 3 dm, chiều cao bằng 4 dm. Tính thể tích của thùng đựng rác.

Lời giải:

Luyện tập 6 trang 114 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Một thùng đựng rác có dạng khối chóp cụt tứ giác đều nên ta có hai đáy là hình vuông.

Diện tích đáy lớn là S1 = 32 = 9 (dm2).

Diện tích đáy bé là S2 = 22 = 4 (dm2).

Vậy thể tích của thùng đựng rác có dạng khối chóp cụt tứ giác đều có chiều cao bằng 4 dm diện tích đáy hai đáy S1 = 9 dm2, S2 = 4 dm2 là:

V=13hS1+S1S2+S2=13.4.9+9.4+4=763 (dm3).

Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:

Giải Toán 11 trang 107 Tập 2

Giải Toán 11 trang 108 Tập 2

Giải Toán 11 trang 110 Tập 2

Giải Toán 11 trang 111 Tập 2

Giải Toán 11 trang 112 Tập 2

Giải Toán 11 trang 114 Tập 2

Giải Toán 11 trang 115 Tập 2

1 132 27/12/2023


Xem thêm các chương trình khác: