Bài 3 trang 115 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Lời giải Bài 3 trang 115 Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 258 27/12/2023


Giải Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Bài 3 trang 115 Toán 11 Tập 2: Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a. Góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng 60°.

a) Chứng minh rằng hai mặt phẳng (ACC’A’) và (BDD’B’) vuông góc với nhau.

b) Tính khoảng cách giữa hai đường thẳng AB và C’D’.

Lời giải:

Bài 3 trang 115 Toán 11 Tập 2 | Cánh diều Giải Toán 11

a) Ta có ABCD.A’B’C’D’ là hình lăng trụ đứng nên BB’ ⊥ (ABCD).

Mà AC ⊂ (ABCD) nên BB’ ⊥ AC.

Do ABCD là hình vuông nên AC ⊥ BD.

Ta có: AC ⊥ BB’, AC ⊥ BD và BB’ ∩ BD = B trong (BDD’B’).

Suy ra AC ⊥ (BDD’B’).

Hơn nữa AC ⊂ (ACC’A’).

Từ đó, ta có (ACC’A’) ⊥ (BDD’B’).

b) Vì ABCD.A’B’C’D’ là hình lăng trụ đứng nên C’D’DC là hình chữ nhật.

Do đó CD // C’D’.

Mà CD // AB (do ABCD là hình vuông) nên AB // C’D’.

Khi đó, d(AB, C’D’) = d(B, C’D’). (1)

Vì ABCD.A’B’C’D’ là hình lăng trụ đứng và đáy ABCD là hình vuông nên A’B’C’D’ cũng là hình vuông.

Do đó C’D’ ⊥ B’C’.

Ta có: C’D’ ⊥ B’C’;

C’D’ ⊥ C’C (do C’D’DC là hình chữ nhật);

B’C’ ∩ C’C = C’ trong (BCC’B’).

Suy ra C’D’ ⊥ (B’C’CB).

Mà BC’ ⊂ (B’C’CB) nên C’D’ ⊥ BC’.

Khi đó d(B, C’D’) = BC’. (2)

Từ (1) và (2) ta có: d(AB, C’D’) = BC’.

Do ABCD.A’B’C’D’ là hình lăng trụ đứng nên C’C ⊥ (ABCD).

Khi đó AC là hình chiếu của AC’ trên (ABCD).

Suy ra góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng C'AC^=60°.

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

AC2 = AB2 + BC2 = a2 + a2 = 2a2.

Suy ra AC=a2.

Ta có: C’C ⊥ (ABCD) và AC ⊂ (ABCD) nên C’C ⊥ AC.

Xét tam giác C’AC vuông tại C (do C’C ⊥ AC) có: tanC'AC^=C'CAC

Do đó C'C=AC.tanC'AC^=a2.tan60°=a6.

Do ABCD.A’B’C’D’ là hình lăng trụ đứng nên B’C’CB là hình chữ nhật.

Suy ra C’C ⊥ BC.

Áp dụng định lí Pythagore vào tam giác C’CB vuông tại C (vì C’C ⊥ BC) có:

BC’2 = CC’2 + BC2

Suy ra BC'=CC'2+BC2=a62+a2=a7.

Do đó dAB,C'D'=BC'=a7.

Vậy khoảng cách giữa hai đường thẳng AB và C’D’ bằng a7.

1 258 27/12/2023


Xem thêm các chương trình khác: