Toán 11 Bài 1 (Cánh diều): Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
Với giải bài tập Toán lớp 11 Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 11 Bài 1.
Giải Toán 11 Bài 1: Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
Lời giải:
Sau bài học này chúng ta sẽ trả lời được câu hỏi trên như sau:
Đại lượng biểu thị tốc độ nhanh chậm của chuyển động tại một thời điểm là v(x0), là đạo hàm của hàm số theo thời gian biểu thị quỹ đạo chuyển động của tên lửa.
I. Đạo hàm tại một điểm
Lời giải:
Ta có vận tốc tức thời tại thời điểm x0 của viên bi là với
Vận tốc tức thời của viên bi tại thời điểm x0 =1 (s) là:
(m/s).
Luyện tập 1 trang 61 Toán 11 Tập 2: Tính đạo hàm của hàm số tại x0 = 2 bằng định nghĩa
Lời giải:
⦁ Xét ∆x là số gia của biến số tại điểm x0 = 2.
Ta có:
Suy ra
⦁ Ta thấy
Vậy
Lời giải:
⦁ Xét ∆x là số gia của biến số tại điểm x.
Ta có ∆y = f(x + ∆x) – f(x) = (x + ∆x)3 – x3
= x3 + 3x2∆x + 3x(∆x)2 + (∆x)3 – x3
= 3x2∆x + 3x(∆x)2 + (∆x)3
= ∆x[3x2 + 3x∆x + (∆x)2]
Suy ra
⦁ Ta thấy
Vậy f’(x) = 3x2.
II. Ý nghĩa hình học của đạo hàm
Đường thẳng M0T được gọi là tiếp tuyến của (C) tại điểm M0, còn M0 được gọi là tiếp điểm (Hình 3).
a) Xác định hệ số góc k0 của tiếp tuyến M0T theo x0.
b) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm M0
Lời giải:
a)Từ M0(x0; y0) và M(xM; yM) ta có
Đường cát tuyến nhận làm vectơ chỉ phương nên có
Hệ số góc là:
Khi đó:
Vậy k0 = f’(x0).
b) Phương trình tiếp tuyến của đồ thị hàm số tại điểm M0(x0; y0) có hệ số góc k0 = f’(x0)là:
y = k0(x – x0) + y0 hay y = f’(x0)(x – x0) + f(x0).
Luyện tập 3 trang 63 Toán 11 Tập 2: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm N(1;1)
Lời giải:
Tiếp tuyến của đồ thị tại điểm có hoành độ bằng 1 có hệ số góc là:
Phương trình tiếp tuyến của đồ thị tại điểm N(1; 1) là:
y = –1(x – 1) + 1 hay y = –x + 2
Bài tập
Lời giải:
Xét ∆x là số gia của biến số tại điểm x0 = 1.
Ta có ∆y = f(1 + ∆x) – f(1) = 3(1 + ∆x)3 – 1 – (3.13 – 1)
= 3 + 9∆x + 9.(∆x)2 + 3(∆x)3 – 1 – 2
= 9∆x + 9.(∆x)2 + 3(∆x)3
= ∆x[9 + 9∆x + 3(∆x)2].
Suy ra:
⦁ Ta thấy:
Lời giải:
Xét ∆x là số gia của biến số tại điểm x0 = 0.
Ta có ∆y = f(0 + ∆x) – f(0) = |∆x| – |0| = |∆x|.
Suy ra
Ta thấy
Do đó nên không tồn tại
Vậy hàm số f(x) = |x| không có đạo hàm tại điểm x0 = 0.
Ta có hàm số
⦁ Với x > 0 ta có hàm số f(x) = x.
Xét ∆x là số gia của biến số tại điểm x > 0.
Ta có ∆y = f(x + ∆x) – f(x) = (x + ∆x) – x = ∆x.
Suy ra
Ta thấy
Do đó với x > 0 thì hàm số có đạo hàm f’(x) = 1.
⦁ Với x < 0 ta có hàm số f(x) = –x.
Xét ∆x là số gia của biến số tại điểm x < 0.
Ta có ∆y = f(x + ∆x) – f(x) = – (x + ∆x) + x = –∆x.
Suy ra
Ta thấy
Do đó với x < 0 thì hàm số có đạo hàm f’(x) = –1.
Vậy hàm số f(x) = |x| không có đạo hàm tại x0 = 0, nhưng có đạo hàm tại mọi điểm x ≠ 0.
Bài 3 trang 63 Toán 11 Tập 2 :Cho hàm y = –2x2 + x có đồ thị (C).
a) Xác định hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2.
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; – 6)
Lời giải:
a) Tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2 có hệ số góc là:
Vậy hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2 là f’(x) = –7.
b) Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; – 6) là:
y = –7(x – 2) – 6 hay y = –7x + 8.
b) Tìm C’(90) và giải thích ý nghĩa kết quả tìm được
Lời giải:
a) Xét ∆Q là số gia của biến số tại điểm Q.
Ta có ∆C = C(Q + ∆Q) – C(Q)
= (Q + ∆Q)2 + 80(Q + ∆Q) + 3 500 – Q2 – 80Q – 3 500
= (∆Q)2 + 2Q. ∆Q + 80∆Q.
= ∆Q(∆Q + 2Q + 80).
Suy ra
Ta thấy
Vậy hàm chi phí biên là: C’(Q) = 2Q + 80 (USD).
b) Ta có C’(90) = 2 . 90 + 80 = 260 (USD).
Ý nghĩa: Để sản xuất thêm 1 sản phẩm từ 90 lên 91 sản phẩm cần chi phí biên (chi phí gia tăng) là 260 (USD).
Lý thuyết Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
1. Định nghĩa
- Cho hàm số xác định trên khoảng (a; b) và điểm .
Nếu tồn tại giới hạn hữu hạn thì giới hạn đó được gọi là đạo hàm của hàm số tại và được kí hiệu là hoặc .
- Hàm số được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.
2. Cách tính đạo hàm bằng định nghĩa
Để tính đạo hàm của hàm số tại , ta lần lượt thực hiện ba bước sau:
Bước 1. Xét là số gia của biến số tại điểm .
Tính .
Bước 2. Rút gọn tỉ số .
Bước 3. Tính .
Kết luận: Nếu thì .
3. Ý nghĩa hình học của đạo hàm
- Đạo hàm của hàm số tại điểm là hệ số góc của tiếp tuyến của đồ thị hàm số đó tại điểm .
- Phương trình tiếp tuyến của đồ thị hàm số tại điểm là .
Sơ đồ tư duy Định nghĩa đạo hàm. Ý nghĩa hình học của đạo hàm
Xem thêm Lời giải bài tập Toán 11 Cánh diều hay, chi tiết khác:
Bài 2: Các quy tắc tính đạo hàm
Bài tập cuối chương 7 trang 76
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều