Luyện tập 5 trang 114 Toán 11 Tập 2 | Cánh diều Giải Toán lớp 11

Lời giải Luyện tập 5 trang 114 Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 181 27/12/2023


Giải Toán 11 Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Luyện tập 5 trang 114 Toán 11 Tập 2: Cho khối tứ diện đều ABCD cạnh a. Chứng minh rằng thể tích của khối tứ diện đó bằng a3212.

Lời giải:

Luyện tập 5 trang 114 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Gọi M là trung điểm của BC, O là trọng tâm tam giác BCD.

Vì ABCD là hình tứ diện đều nên BCD là tam giác đều.

Mà O là trọng tâm tam giác BCD nên O cũng là tâm đường tròn ngoại tiếp tam giác BCD.

Do đó AO ⊥ (BCD).

Xét tam giác đều BCD có: DM là đường trung tuyến (do M là trung điểm của BC) cũng đồng thời là đường cao của tam giác nên DM ⊥ BC.

Do M là trung điểm của BC nên MC=BC2=a2.

Áp dụng định lí Pythagore vào tam giác DMC vuông tại M (do DM ⊥ BC) có:

DC2 = DM2 + MC2

Do đó DM=DC2MC2=a2a22=a32.

Vì O là trọng tâm tam giác BCD nên OD=23DM=23.a32=a33.

Do AO ⊥ (BCD) và DO ⊂ (BCD) nên AO ⊥ DO, do đó tam giác ADO vuông tại O.

Áp dụng định lí Pythagore vào tam giác ADO vuông tại O có:

AD2 = AO2 + DO2

Suy ra AO=AD2DO2=a2a332=a2a23=2a23=a63.

Diện tích tam giác BCD đều có đường cao DM là:

SΔBCD=12.DM.BC=12.a32.a=a234 (đvdt).

Thể tích của khối tứ diện đều ABCD cạnh a có chiều cao AO=a63 và diện tích đáy SΔBCD=a234là:

VABCD=13SΔBCD.AO=13.a234.a63=a3212 (đvtt)

1 181 27/12/2023


Xem thêm các chương trình khác: