Giải Toán 7 trang 119 Tập 2 Cánh diều
Với giải bài tập Toán lớp 7 trang 119 Tập 2 trong Bài tập cuối chương 7 sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 7 trang 119 Tập 2.
Giải Toán 7 trang 119 Tập 2
Bài 1 trang 119 Toán 7 Tập 2: Cho tam giác ABC có:
b) So sánh độ dài các cạnh AB, BC, CA.
Lời giải:
a) Xét tam giác ABC: (tổng ba góc trong một tam giác)
Suy ra .
Vậy
b) Ta có: 37° < 42° < 101° nên .
Do đó CA < BC < AB (quan hệ giữa góc và cạnh đối diện)
Vậy CA < BC < AB.
Bài 2 trang 119 Toán 7 Tập 2: Tìm các số đo x, y trong Hình 140.
Lời giải:
Xét tam giác ABO có OA = AB = BO nên tam giác ABO đều.
Do đó x = 60°.
Tam giác OAC có OA = OC nên tam giác OAC cân tại O.
Do đó .
Ta có là góc ngoài tại đỉnh O của OAC nên .
hay x = y + y = 2y.
Suy ra 2y = 60°
Do đó y = 30°.
Vậy x = 60° và y = 30°.
Bài 3 trang 119 Toán 7 Tập 2: Bạn Hoa đánh dấu ba vị trí A, B, C trên một phần sơ đồ xe buýt ở Hà Nội năm 2021 và xem xe buýt có thể đi như thế nào giữa hai vị trí A và B. Đường thứ nhất đi từ A đến C và đi tiếp từ C đến B, đường thứ hai đi từ B đến A (Hình 141). Theo em, đường nào đi dài hơn? Vì sao?
Lời giải:
Ba vị trí A, B, C mà bạn Hoa đánh dấu tạo thành ba đỉnh của tam giác ABC (Hình 141).
Khi đó trong tam giác ABC ta có: AC + CB > BA (Bất đẳng thức tam giác)
Vậy đường thứ nhất dài hơn đường thứ hai.
Bài 4 trang 119 Toán 7 Tập 2: Cho hai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM. Gọi I và K lần lượt là trung điểm của BC và NP. Chứng minh: AI = MK.
Lời giải:
GT |
ABC, MNP, AB = MN, BC = NP, CA = PM, I và K lần lượt là trung điểm của BC và NP. |
KL |
AI = MK. |
Chứng minh (Hình vẽ dưới đây):
Xét ABC và MNP có:
AB = MN (giả thiết).
BC = NP (giả thiết).
CA = PM (giả thiết).
Do đó ABC = MNP (c.c.c).
Suy ra .
Do I, K lần lượt là trung điểm của BC và NP nên và
Mà BC = NP (giả thiết) nên BI = NK.
Xét ABI và MNK có:
AB = MN (giả thiết).
(chứng minh trên).
BO = NK (chứng minh trên).
Do đó ABI = MNK (c.g.c).
Suy ra AI = MK (hai cạnh tương ứng).
Vậy AI = MK.
Bài 5 trang 119 Toán 7 Tập 2: Cho Hình 142 có O là trung điểm của đoạn thẳng AB và O nằm giữa hai điểm M, N.
Lời giải:
a)
GT |
OAM, OBN, O là trung điểm của AB, O nằm giữa hai điểm M, N. OM = ON |
KL |
AM // BN; |
Chứng minh (Hình 142):
Xét OAM và OBN có:
AO = BO (do M là trung điểm của AB),
(hai góc đối đỉnh),
OM = ON (giả thiết).
Do đó OAM = OBN (c.g.c).
Suy ra (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên AM // BN (dấu hiệu nhận biết)
Vậy AM //BN.
b)
GT |
OAM, OBN, O là trung điểm của AB, O nằm giữa hai điểm M, N. AM // BN |
KL |
OM = ON. |
Chứng minh (Hình 142):
Do AM // BN (giả thiết) nên (hai góc so le trong).
Xét OAM và OBN có:
(chứng minh trên),
AO = BO (do M là trung điểm của AB),
(hai góc đối đỉnh).
Do đó OAM = OBN (g.c.g).
Suy ra OM = ON (hai cạnh tương ứng).
Vậy OM = ON.
Bài 6 trang 119 Toán 7 Tập 2: Cho tam giác ABC cân tại A có
. Hai đường cao BD và CE cắt nhau tại H.
a) Tính số đo các góc còn lại của tam giác ABC.
c) Chứng minh tia AH là tia phân giác của góc BAC.
Lời giải:
GT |
ABC cân tại A, BD AC, CE AB, BD cắt CE tại H. |
KL |
a) Tính số đo các góc còn lại của tam giác ABC; b) BD = CE; c) AH là tia phân giác của góc BAC. |
Chứng minh (Hình vẽ dưới đây):
a) Do tam giác ABC cân tại A (giả thiết)
Nên AB = AC và (tính chất tam giác cân)
Xét tam giác ABC có (tổng ba góc trong tam giác)
Suy ra .
Vậy và
b) Xét ADB (vuông tại D) và ACE (vuông tại E) có:
AB = AC (chứng minh trên),
là góc chung,
Do đó ABD = ACE (cạnh huyền - góc nhọn).
Suy ra BD = CE (hai cạnh tương ứng).
Vậy BD = CE.
c) Vì ABD = ACE (chứng minh câu a) nên AD = AE (hai cạnh tương ứng).
Xét AHE (vuông tại E) và AHD (vuông tại D) có:
AE = AD (chứng minh trên),
AH là cạnh chung.
Do đó AHE = AHD (cạnh huyền - cạnh góc vuông).
Suy ra (hai góc tương ứng).
Do đó AH là tia phân giác của .
Vậy AH là tia phân giác của .
Bài 7 trang 119 Toán 7 Tập 2: Cho hai tam giác nhọn ABC và ECD, trong đó ba điểm B, C, D thẳng hàng. Hai đường cao BM và CN của tam giác ABC cắt nhau tại I, hai đường cao CP và DQ của tam giác ECD cắt nhau tại K (Hình 143). Chứng minh AI // EK.
Lời giải:
GT |
ABC nhọn và ECD nhọn Ba điểm B, C, D thẳng hàng, ABC: hai đường cao BM và CN cắt nhau tại I, ECD: hai đường cao CP và DQ cắt nhau tại K |
KL |
AI // EK. |
Chứng minh (Hình 143):
Vì ABC có hai đường cao BM và CN cắt nhau tại I (giả thiết) nên I là trực tâm của ABC.
Suy ra AI BC.
Vì ECD có hai đường cao CP và DQ cắt nhau tại K (giả thiết) nên K là trực tâm của ECD.
Suy ra EK CD.
Mà B, C, D thẳng hàng (giả thiết) nên
• AI BC (chứng minh trên) suy ra AI BD;
• EK CD (chứng minh trên) suy ra EK BD.
Do đó AI // EK (hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì hai đường thẳng đó song song)
Vậy AI // EK.
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 1: Tập hợp Q các số hữu tỉ
Bài 2: Cộng, trừ, nhân, chia số hữu tỉ
Bài 3: Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất)– Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Giải sbt Ngữ văn lớp 7 – Cánh Diều
- Văn mẫu lớp 7 – Cánh Diều
- Soạn văn lớp 7 (ngắn nhất) – Cánh Diều
- Giải VBT Ngữ văn lớp 7 – Cánh diều
- Giải sgk Tiếng Anh 7 - Explore English
- Giải sgk Tiếng Anh 7 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 7 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 i-learn Smart World
- Bài tập Tiếng Anh 7 iLearn Smart World theo Unit có đáp án
- Giải sbt Tiếng Anh 7 - ilearn Smart World
- Giải sgk Lịch sử 7 – Cánh Diều
- Lý thuyết Lịch Sử 7 – Cánh Diều
- Giải sbt Lịch sử 7 – Cánh Diều
- Giải VBT Lịch sử 7 – Cánh diều
- Giải sgk Khoa học tự nhiên 7 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 7 – Cánh Diều
- Giải sbt Khoa học tự nhiên 7 – Cánh Diều
- Giải sgk Địa lí 7 – Cánh Diều
- Lý thuyết Địa Lí 7 – Cánh Diều
- Giải sbt Địa lí 7 – Cánh Diều
- Giải VBT Địa lí 7 – Cánh diều
- Giải sgk Tin học 7 – Cánh Diều
- Lý thuyết Tin học 7 – Cánh Diều
- Giải sbt Tin học 7 – Cánh Diều
- Giải sgk Giáo dục công dân 7 – Cánh Diều
- Lý thuyết Giáo dục công dân 7 – Cánh Diều
- Giải sbt Giáo dục công dân 7 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sgk Công nghệ 7 – Cánh Diều
- Lý thuyết Công nghệ 7 – Cánh Diều
- Giải sbt Công nghệ 7 – Cánh Diều
- Giải sgk Giáo dục thể chất 7 – Cánh Diều
- Giải sgk Âm nhạc 7 – Cánh Diều