Cho đa thức P = 5x^2y – 2xy^2 + xy – x + y – 2. a) Tìm đa thức Q, biết rằng P + Q

Trả lời Bài 1.28 trang 18 SBT Toán 8 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong sách bài tập Toán 8.

1 3,160 17/08/2023


Giải SBT Toán 8 (Kết nối tri thức) Bài tập cuối chương 1

Bài 1.28 trang 18 SBT Toán 8 Tập 1: Cho đa thức P = 5x2y – 2xy2 + xy – x + y – 2.

a) Tìm đa thức Q, biết rằng P + Q = (x + y)(2xy + 2y2 – 1).

b) Tìm đa thức R, biết rằng P – R = –xy(x – y).

Lời giải:

Ta có:

P + Q = (x + y)(2xy + 2y2 – 1)

= x.2xy + x.2y2 + x.(‒1) + y.2xy + y.2y2 + y.(‒1)

= 2x2y + 2xy2 ‒ x + 2xy2 + 2y3 ‒ y

= 2x2y + (2xy2 + 2xy2) ‒ x + 2y3 ‒ y

= 2x2y + 4xy2 ‒ x + 2y3 ‒ y

Do đó P + Q = 2x2y + 4xy2 ‒ x + 2y3 ‒ y

Suy ra Q = 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ P

= 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ (5x2y – 2xy2 + xy – x + y – 2)

= 2x2y + 4xy2 ‒ x + 2y3 ‒ y ‒ 5x2y + 2xy2 ‒ xy + x ‒ y + 2)

= (2x2y ‒ 5x2y) + (4xy2 + 2xy2) + (‒x + x) + 2y3 ‒ xy + (‒ y ‒ y) + 2

= ‒3x2y + 6xy2 + 2y3 ‒ xy ‒ 2y + 2.

b) Ta có P – R = –xy(x – y) = ‒x2y + xy2

Nên R = P ‒ (‒x2y + xy2)

Suy ra R = 5x2y – 2xy2 + xy – x + y – 2+ x2y – xy2

= (5x2y + x2y) + (–2xy2 ‒ xy2) + xy – x + y – 2

= 6x2y ‒ 3xy2 + xy – x + y – 2.

1 3,160 17/08/2023


Xem thêm các chương trình khác: