Giải Toán 7 trang 101 Tập 2 Cánh diều
Với giải bài tập Toán lớp 7 trang 101 Tập 2 trong Bài 9: Đường trung trực của một đoạn thẳng sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 7 trang 101 Tập 2.
Giải Toán 7 trang 101 Tập 2
Luyện tập 1 trang 101 Toán 7 Tập 2:
Lời giải:
GT |
ABC, M là trung điểm của BC,
|
KL |
AM là đường trung trực của đoạn thẳng BC. |
Chứng minh (Hình vẽ dưới đây):
Vì và là hai góc kề bù nên (tính chất hai góc kề bù)
Mà (giả thiết) nên
Suy ra AM BC.
Lại có M là trung điểm của BC (giả thiết)
Do đó AM BC tại trung điểm M của BC nên AM là đường trung trực của BC.
Vậy AM là đường trung trực của BC.
Hoạt động 2 trang 101 Toán 7 Tập 2: Cho đoạn thẳng AB có trung điểm O, d là đường trung trực của đoạn thẳng AB, điểm M thuộc d, M khác O (Hình 90).
Lời giải:
GT |
O là trung điểm của AB, d là đường trung trực của đoạn thẳng AB, M ∈ d, M ≠ O. |
KL |
a) MOA = MOB; b) MA = MB. |
Chứng minh (Hình 90):
a) Vì d là đường trung trực của đoạn thẳng AB (giả thiết)
Nên MO AB tại O
Do đó tam giác MOA vuông tại O và tam giác MOB vuông tại O.
Xét MOA (vuông tại O) và MOB (vuông tại O) có:
MO là cạnh chung,
OA = OB (O là trung điểm của AB).
Do đó MOA = MOB (hai cạnh góc vuông).
Vậy MOA = MOB.
b) Vì MOA = MOB (chứng minh trên)
Nên MA = MB (hai cạnh tương ứng).
Vậy MA = MB.
Luyện tập 2 trang 101 Toán 7 Tập 2: Hình 91 mô tả mặt cắt đứng của một ngôi nhà với hai mái là OA và OB, mái nhà bên trái dài 3 m. Tính chiều dài mái nhà bên phải, biết rằng điểm O thuộc đường trung trực của đoạn thẳng AB.
Lời giải:
Do O thuộc đường trung trực của đoạn thẳng AB nên OA = OB (tính chất đường trung trực)
Mà OA = 3 m nên OB = 3 m.
Vậy chiều dài mái nhà bên phải là 3 m.
Hoạt động 3 trang 101 Toán 7 Tập 2: Cho đoạn thẳng AB có trung điểm O. Giả sử M là một điểm khác O sao cho MA = MB.
a) Hai tam giác MOA và MOB có bằng nhau hay không? Vì sao?
b) Đường thẳng MO có là đường trung trực của đoạn thẳng AB hay không? Vì sao?
Lời giải:
a) Xét MOA và MOB có:
OA = OB (O là trung điểm của AB),
MA = MB (giả thiết),
MO là cạnh chung
Do đó MOA = MOB (c.c.c).
Vậy MOA = MOB.
b) Vì MOA = MOB (chứng minh câu a)
Mà (tính chất hai góc kề bù)
Do đó
Khi đó MO AB tại trung điểm O của đoạn thẳng AB.
Vậy MO là đường trung trực của đoạn thẳng AB.
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 10: Tính chất ba đường trung tuyến của tam giác
Bài 11: Tính chất ba đường phân giác của tam giác
Bài 12: Tính chất ba đường trung trực của tam giác
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất)– Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Giải sbt Ngữ văn lớp 7 – Cánh Diều
- Văn mẫu lớp 7 – Cánh Diều
- Soạn văn lớp 7 (ngắn nhất) – Cánh Diều
- Giải VBT Ngữ văn lớp 7 – Cánh diều
- Giải sgk Tiếng Anh 7 - Explore English
- Giải sgk Tiếng Anh 7 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 7 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 i-learn Smart World
- Bài tập Tiếng Anh 7 iLearn Smart World theo Unit có đáp án
- Giải sbt Tiếng Anh 7 - ilearn Smart World
- Giải sgk Lịch sử 7 – Cánh Diều
- Lý thuyết Lịch Sử 7 – Cánh Diều
- Giải sbt Lịch sử 7 – Cánh Diều
- Giải VBT Lịch sử 7 – Cánh diều
- Giải sgk Khoa học tự nhiên 7 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 7 – Cánh Diều
- Giải sbt Khoa học tự nhiên 7 – Cánh Diều
- Giải sgk Địa lí 7 – Cánh Diều
- Lý thuyết Địa Lí 7 – Cánh Diều
- Giải sbt Địa lí 7 – Cánh Diều
- Giải VBT Địa lí 7 – Cánh diều
- Giải sgk Tin học 7 – Cánh Diều
- Lý thuyết Tin học 7 – Cánh Diều
- Giải sbt Tin học 7 – Cánh Diều
- Giải sgk Giáo dục công dân 7 – Cánh Diều
- Lý thuyết Giáo dục công dân 7 – Cánh Diều
- Giải sbt Giáo dục công dân 7 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sgk Công nghệ 7 – Cánh Diều
- Lý thuyết Công nghệ 7 – Cánh Diều
- Giải sbt Công nghệ 7 – Cánh Diều
- Giải sgk Giáo dục thể chất 7 – Cánh Diều
- Giải sgk Âm nhạc 7 – Cánh Diều