50 Bài tập Hình chữ nhật Toán 8 mới nhất

Với 50 Bài tập Hình chữ nhật Toán lớp 8 mới nhất được biên soạn bám sát chương trình Toán 8 giúp các bạn học tốt môn Toán hơn.

Tài liệu gồm: 15 bài tập trắc nghiệm, 15 bài tập tự luận có lời giải và 20 bài tập vận dụng. Mời các bạn đón xem:

1 1,837 18/08/2022
Tải về


Bài tập Hình chữ nhật - Toán 8

I. Bài tập trắc nghiệm

Bài 1: Chọn đáp án đúng nhất trong các đáp án sau?

A. Hình chữ nhật là tứ giác có bốn cạnh bằng nhau.

B. Hình chữ nhật là tứ giác có bốn góc vuông.

C. Hình chữ nhật là tứ giác có hai góc vuông.

D. Các phương án trên đều không đúng.

Lời giải:

Định nghĩa: Hình chữ nhật là tứ giác có bốn góc vuông.

Chọn đáp án B.

Bài 2: Tìm câu sai trong các câu sau

A. Trong hình chữ nhật có hai đường chéo bằng nhau.

B. Trong hình chữ nhật có hai đường chéo cắt nhau tại trung điểm mỗi đường.

C. Trong hình chữ nhật có hai cạnh kề bằng nhau.

D. Trong hình chữ nhật, giao của hai đường chéo là tâm của hình chữ nhật đó

Lời giải:

Định lý trong hình chữ nhật

+ Hình chữ nhật có hai đường chéo bằng nhau.

+ Hình chữ nhật có hai đường chéo cắt nhau tại trung điểm mỗi đường.

+ Giao của hai đường chéo của hình chữ nhật là tâm của hình chữ nhật đó.

+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông

⇒ Đáp án C sai.

Chọn đáp án C.

Bài 3: Các dấu hiệu nhận biết sau, dấu hiệu nào nhận biết chưa đúng?

A. Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình chữ nhật.

B. Tứ giác có ba góc vuông là hình chữ nhật.

C. Hình thang cân có một góc vuông là hình chữ nhật.

D. Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

Lời giải:

Dấu hiệu nhận biết hình chữ nhật:

+ Tứ giác có ba góc vuông là hình chữ nhật.

+ Hình thang cân có một góc vuông là hình chữ nhật.

+ Hình bình hành có một góc vuông là hình chữ nhật.

+ Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.

⇒ Hình bình hành có hai đường chéo cắt nhau tại trung điểm mỗi đường chưa đủ điều kiện để là hình chữ nhật.

Chọn đáp án A.

Bài 4: Khoanh tròn vào phương án sai

A. Trong tam giác vuông đường trung tuyến ứng với cạnh huyền và bằng nửa cạnh huyền.

B. Trong tam giác, đường trung tuyến với với một cạnh và bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

C. Trong tam giác vuông, đường trung tuyến ứng với cạnh góc vuông không bằng cạnh ấy.

 D. Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền thì vuông góc với cạnh huyền.

Lời giải:

Định lý

+ Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

+ Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy thì tam giác đó là tam giác vuông.

Chọn đáp án D.

Bài 5: Trong hình chữ nhật có kích thước lần lượt là 5cm và 12cm. Độ dài đường chéo của hình chữ nhật là ?

A. 17cm   

B. 13cm

C. 119 cm   

D. 12cm

Lời giải:

Độ dài của đường chéo hình chữ nhật bằng căn bậc hai tổng hai bình phương của hai kích thước hình chữ nhật

Do đó, độ dài đường chéo là 52+122 = 13( cm )

Chọn đáp án B.

Bài 6: Cho hình chữ nhật ABCD có AB = 6cm và đường chéo BD = 10cm. Tính BC?

A. 8cm    

B. 6cm

C. 7cm    

D. 9cm

Lời giải:

Vì ABCD là hình chữ nhật nên AC = BD = 10cm.

Áp dụng định lí Pytago vào tam giác ABC ta có:

AC2 = AB2 + BC2

Suy ra: BC2 = AC2 - AB2 = 102 – 62 = 64

Nên BC = 8 cm

Chọn đáp án A

Bài 7: Cho tam giác ABC vuông tại B, gọi M là trung điểm của AC. Biết AB = 3cm, BC = 4cm. Tính BM?

A. 2cm    

B. 3cm

C. 2,5cm    

D. 3,5cm

Lời giải:

Áp dụng định lí Pytago vào tam giác vuông ABC ta có:

AC2 = AB2 + BC2 = 32 + 42 = 25

Suy ra: AC = 5cm

Tam giác ABC vuông tại B có BM là đường trung tuyến ứng với cạnh huyền AC nên:

Bài tập Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Chọn đáp án

Bài 8: Cho hình thang vuông ABCD có A^+D^ = 90o. Gọi M là trung điểm của AC và BM = 12 AC. Tìm khẳng định sai?

A. AC = BD

B. Tứ giác ABCD là hình chữ nhật

C. M là trung điểm của BD

D. AD = AB

Lời giải:

+ Xét tam giác ABC có đường trung tuyến BM và BM = 12 AC

Suy ra: tam giác ABC vuông tại B: B^ = 90o

* Xét tứ giác ABCD có A^=D^=B^ = 90o

Suy ra: tứ giác ABCD là hình chữ nhật (dấu hiệu nhận biết)

Theo tính chất của hình chữ nhật ta có:

AC = BD; AB = CD; AD = BC

Chọn đáp án D

Bài 9: Cho tam giác ABC vuông tại A. Gọi M , N, P lần lượt là trung điểm của AB; AC và BC. Hỏi tứ giác AMPN là hình gì? Chọn khẳng định đúng nhất?

A. Hình bình hành

B. Hình thang cân

C. Hình thang vuông

D. Hình chữ nhật

Lời giải:

* Ta có: M và P lần lượt là trung điểm của AB và BC nên MP là đường trung bình của tam giác.

Bài tập Hình chữ nhật | Lý thuyết và Bài tập Toán 8 có đáp án

Từ (1) và (2)suy ra: MP = AN .

* Xét tứ giác AMPN có: MP// AN ( vì MP // AC) và MP = AN

Suy ra: tứ giác AMPN là hình bình hành.

* Lại có BAC^ = 90o ( giả thiết)

Suy ra: tứ giác AMPN là hình chữ nhật.

Chọn đáp án D

Bài 10: Cho hình thang vuông ABCD vuông tại A và D, có AB = 6cm; DC = 9cm ; BC = 5cm. Tính AD?

A. 3cm    

B. 4cm

C. 5cm    

D. 6cm

Lời giải:

Kẻ BH vuông góc với CD tại H.

* xét tứ giác ABHD có: A^=D^=H^

Suy ra: tứ giác ABHD là hình chữ nhật

⇒ DH = AB = 6 (tính chất hình chữ nhật )

* HC = CD - DH = 9 – 6 = 3cm

* Áp dụng định lí Pytago vào tam giác vuông BCH có:

BH2 + HC2 = BC2

Suy ra: BH2 = BC2 – HC2 = 52 – 32 = 16

Nên BH = 4cm

* Vì ABHD là hình chữ nhật nên AD = BH = 4cm

Chọn đáp án B

Bài 11: Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:

A. 10cm         

B. 9cm

C. 5cm

D. 8cm

Lời giải:

Trắc nghiệm Hình chữ nhật có đáp án

Áp dụng định lý Pytago cho tam giác ABC vuông tại A ta có:

BC2 = AC2 + AB2 hay BC2 = 62 + 82

⇒ BC2 = 100. Suy ra BC = 10 (cm)

Do AH là đường trung tuyến ứng với cạnh huyền BC nên

AH = BC : 2 = 10 : 2 = 5cm

Đáp án cần chọn là: C

Bài 12: Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 5cm, 12cm là:

A. 6,5cm        

B. 6cm

C. 13cm          

D. 10cm

Lời giải:

Trắc nghiệm Hình chữ nhật có đáp án

Áp dụng định lý Pytago cho tam giác ABC vuông tại A ta có:

BC2 = AC2 + AB2 hay BC2 = 52 + 122

⇒ BC2 = 169. Suy ra BC = 13 (cm)

Do AH là đường trung tuyến ứng với cạnh huyền BC nên

AH = BC : 2 = 13 : 2 = 6,5cm

Đáp án cần chọn là: A

Bài 13: Cho tam giác ABC vuông tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:

A. 6cm

B. 36cm          

C. 18cm          

D. 12cm

Lời giải:

Trắc nghiệm Hình chữ nhật có đáp án

+ Xét tứ giác ADME có Trắc nghiệm Hình chữ nhật có đáp án nên ADME là hình chữ nhật

+ Xét tam giác DMB có Trắc nghiệm Hình chữ nhật có đáp án (do tam giác ABC vuông cân) nên tam giác BDM vuông cân tại D. Do đó Dm = BD

+ Do ADME là hình chữ nhật nên chu vi ADME là:

(AD + DM).2 = (AD + BD).2 = 6.2 = 12 cm

Vậy chu vi ADME là 12cm

Đáp án cần chọn là: D

Bài 14: Cho tam giác ABC vuông tại A, AC = 8cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:

A. 16cm         

B. 38cm          

C. 18cm          

D. 12cm

Lời giải:

Trắc nghiệm Hình chữ nhật có đáp án

+ Xét tứ giác ADME có Trắc nghiệm Hình chữ nhật có đáp án nên ADME là hình chữ nhật

+ Xét tam giác DMB có Trắc nghiệm Hình chữ nhật có đáp án (do tam giác ABC vuông cân) nên tam giác BDM vuông cân tại D. Do đó DM = BD

+ Do ADME là hình chữ nhật nên chu vi ADME là:

(AD + DM).2 = (AD + BD).2 = 8.2 = 16 cm

Vậy chu vi ADME là 12cm

Đáp án cần chọn là: A

Bài 15: Cho tam giác ABC với ba trung tuyến AI, BD, CE đồng quy tại G. M và N lần lượt là trung điểm của GC và GB.

1. Tứ giác MNED là hình gì?

A. Hình chữ nhật

B. Hình bình hành

C. Hình thang cân

D. Hình thang vuông

Lời giải:

Trắc nghiệm Hình chữ nhật có đáp án

+ Xét tam giác ABC có E là trung điểm AB; D là trung điểm AC nên ED là đường trung bình của tam giác ABC ⇒ ED // BC; ED = Trắc nghiệm Hình chữ nhật có đáp ánBC (1)

+ Xét tam giác GBC có N là trung điểm của GB; M là trung điểm GC nên MN là đường trung bình của tam giác GBC. ⇒ MN // BC; MN = Trắc nghiệm Hình chữ nhật có đáp ánBC (2)

Từ (1), (2) ⇒ MN // ED, MN = ED nên tứ giác MNED là hình bình hành (dấu hiệu nhận biết)

Đáp án cần chọn là: B

2. Để MNED là hình chữ nhật thì tam giác ABC cần có điều kiện:

A. ΔABC đều                         

B. ΔABC vuông tại A

C. ΔABC cân tại A                

D. ΔABC vuông cân tại A

Lời giải

Trắc nghiệm Hình chữ nhật có đáp án

+ Xét tam giác ABG có EN là đường trung bình nên EN // AG hay EN // AI.

+ Để hình bình hành MNED là hình chữ nhật thì Trắc nghiệm Hình chữ nhật có đáp án = 900 ⇒ EN ⊥ MN. Mà MN // BC (câu trên) nên EN ⊥ BC

+ Lại có EN // AI suy ra AI ⊥ BC

Xét tam giác ABC có AI vừa là đường cao vừa là trung tuyến nên ΔABC cân tại A.

Đáp án cần chọn là: C

II. Bài tập tự luận có lời giải

Bài 1: Chứng minh rằng:

a) Giao điểm của hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.

b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.

Lời giải:

a)

hình giải bài 59 trang 99 sgk toán 8 tập 1

Giả sử ABCD là hình chữ nhật. Gọi O là giao điểm của AC và BD.

Theo tính chất đường chéo của hình chữ nhật ta có; hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.

Vậy: OA = OC và OB= OD

Do đó, O là tâm đối xứng của hình chữ nhật đó.

b)

hình giải bài 59 trang 99 sgk toán 8 tập 1-1

Áp dung tính chất: Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.

ABCD là hình chữ nhật

⇒ ABCD là hình thang cân (hai đáy AB và CD)

⇒ Đường thẳng đi qua trung điểm AB và CD là trục đối xứng ABCD.

Tương tự vậy: ABCD cũng là hình thang cân với hai đáy AD và BC

⇒ Đường thẳng đi qua trung điểm AD và BC là trục đối xứng của ABCD.

Vậy ta có điều phải chứng minh.

Bài 2 Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Hinh 1 giải bài 64 trang 100 sgk toán 8 tập 1

Hướng dẫn giải chi tiết:

Hinh 2  giải bài 64 trang 100 sgk toán 8 tập 1

Bài 3 Điền vào chỗ trống, biết rằng a, b là độ dài của các cạnh, d là độ dài đường chéo của một hình chữ nhật.

a 5 .... 13
b 12 6 ....
d .... 10 7


Lời giải:

Giải Toán 8: Bài 58 trang 99 SGK Toán 8 tập 1 | Giải bài tập Toán 8

Trong hình chữ nhật ABCD ta luôn có

Do đó áp dụng định lý Py-ta-go ta có: d2 = a2 + b2.

Vậy :

- Cột thứ hai:

d2 = a2 + b2 = 52 + 122 = 25 + 144 = 169 nên d = 13

- Cột thứ ba:

a2 + b2 = d2 ⇒ a2 = d2 – b2 = 102-62 = 4 nên a = 2

- Cột thứ tư:

a2 + b2 = d2 ⇒ b2 = d2 – a2 = 72 – 132 = 36 nên b = 6.

Vậy ta có bảng sau:

a 5 2 13
b 12 6 6
d 13 10 7

Bài 4 Tính độ dài đường trung tuyến ứng với cạnh huyền của một tam giác vuông có cạch góc vuông bằng 7cm và 24 cm.

Lời giải:

Gọi a là độ dài cạnh huyền của tam giác vuông.

Theo định lý Pi-ta-go ta có:

a2 = 72 + 242 = 625

⇒ a = 25cm

⇒ Độ dài trung tuyến ứng với cạnh huyền bằng: a2=252 = 12,5 (cm).

Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Tứ giác AHCE là hình gì? Vì sao?

Lời giải:

Giải Toán 8: Bài 61 trang 99 SGK Toán 8 tập 1 | Giải bài tập Toán 8

I là trung điểm của AC ⇒ IA = IC.

E đối xứng với H qua I ⇒ IE = IH

⇒ AC ∩ HE = I là trung điểm của AC và HE

⇒ AHCE là hình bình hành (dấu hiệu nhận biết 4)

Lại có : Ĥ = 90º

⇒ AHCE là hình chữ nhật (đpcm).

Bài 5 Các câu sau đúng hay sai?

a) Nếu tam giác ABC vuông tại C thì điểm C thuộc đường tròn có đường kính là AB (h.88)

b) Nếu điểm C thuộc đường tròn có đường kính là AB (C khác A và B) thì tam giác ABC vuông tại C (h.89).

Giải Toán 8: Bài 62 trang 99 SGK Toán 8 tập 1 | Giải bài tập Toán 8

Lời giải:

a) Đúng

Gọi O là trung điểm của AB.

Ta có CO là trung tuyến ứng với cạnh huyền nên

⇒ OC = AB2 = OA = OB.

⇒ A, B, C cùng thuộc đường tròn bán kính OA.

Tâm O là trung điểm của AB nên AB là đường kính.

Vậy C thuộc đường tròn đường kính AB.

b) Đúng

Gọi O là tâm đường tròn.

⇒ OA = OB = OC = R

AB là đường kính nên AB = 2R.

Tam giác ABC có CO là trung tuyến và CO = AB2

⇒ ΔABC vuông tại C.

Bài 6 Chứng minh rằng:

a) Giao điểm của hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.

b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.

Lời giải:

a)

Giải Toán 8: Bài 59 trang 99 SGK Toán 8 tập 1 | Giải bài tập Toán 8

Giả sử có ABCD là hình chữ nhật có AC ∩ DB = O.

ABCD là hình chữ nhật

⇒ ABCD là hình bình hành

⇒ O là tâm đối xứng của ABCD.

b)

Giải Toán 8: Bài 59 trang 99 SGK Toán 8 tập 1 | Giải bài tập Toán 8

ABCD là hình chữ nhật

⇒ ABCD là hình thang cân (2 đáy AB và CD)

⇒ Đường thẳng đi qua trung điểm AB và CD là trục đối xứng ABCD.

Tương tự vậy: ABCD cũng là hình thang cân với 2 đáy AD và BC

⇒ Đường thẳng đi qua trung điểm AD và BC là trục đối xứng của ABCD.

Vậy ta có điều phải chứng minh.

Bài 7 Tìm x trên hình 90

Giải Toán 8: Bài 63 trang 100 SGK Toán 8 tập 1 | Giải bài tập Toán 8

Lời giải:

Giải Toán 8: Bài 63 trang 100 SGK Toán 8 tập 1 | Giải bài tập Toán 8

Kẻ BH ⊥ CD

⇒ ABHD là hình chữ nhật

⇒ ABHD là hình bình hành

⇒ DH = AB = 10 ⇒ HC = CD – DH = 5.

Δ BHC vuông tại H có:

Giải Toán 8: Bài 63 trang 100 SGK Toán 8 tập 1 | Giải bài tập Toán 8

ABHD là hình bình hành

⇒ AD = BH = 12

hay x = 12.

Bài 8. Một đội công nhân đang trồng cây trên đoạn đường AB thì gặp chướng ngại vật che lấp tầm nhìn (h.92). Đội đã dựng các điểm C, D, E như trên hình vẽ rồi trồng cây tiếp trên đoạn đường EF vuông góc với DE. Vì sao AB và EF cùng nằm trên một đường thẳng?

Lời giải:

Giải Toán 8: Bài 66 trang 100 SGK Toán 8 tập 1 | Giải bài tập Toán 8 Giải Toán 8: Bài 66 trang 100 SGK Toán 8 tập 1 | Giải bài tập Toán 8

Bài 9 Cho ΔABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm P vẽ PM // BC (M thuộc AB). Chứng minh rằng tứ giác PCQM là hình chữ nhật.

Hướng dẫn:

Ta có ΔABC vuông cân A^=45 

 ΔAPM vuông cân

 AP = PM

Theo giả thiết AP = CQ  PM = CQ

Lại có PM // CQ  tứ giác PMCQ là hình bình hành.

Mà C^=90  tứ giác PMCQ là hình chữ nhật.

III. Bài tập vận dụng

Bài 1 Cho tứ giác ABCD có AC  BD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng tứ giác EFGH là hình chữ nhật.

Bài 2 Cho ΔABC vuông tại A, AB < AC, đường cao AH. Lấy điểm E trên cạnh AC sao cho AE = AB. Gọi I là trung điểm của BE, kẻ EK  BC (K  BC), EN  AH (N  AH)

a) Chứng minh rằng tứ giác NEKH là hình chữ nhật.

b) IHA^=IHC^

Bài 3 Chứng minh rằng hình chữ nhật ABCD trên hình 84 cũng là một hình bình hành, một hình thang cân.

Câu hỏi 1 trang 97 Toán 8 Tập 1 Bài 9 | Giải Toán 8 – TopLoigiai

Bài 4 Với một chiếc compa, ta sẽ kiểm tra được hai đoạn thẳng bằng nhau hay không bằng nhau. Bằng compa, để kiểm tra tứ giác ABCD có là hình chữ nhật hay không, ta làm thế nào ?

Bài 5 Cho hình 86:

a) Tứ giác ABDC là hình gì ? Vì sao ?

b) So sánh các độ dài AM và BC.

c) Tam giác vuông ABC có AM là đường trung tuyến ứng với cạnh huyền. Hãy phát biểu tính chất tìm được ở câu b) dưới dạng một định lý.

Câu hỏi 3 trang 98 Toán 8 Tập 1 Bài 9 | Giải Toán 8 – TopLoigiai

Bài 6 Cho hình 87:

a) Tứ giác ABDC là hình gì ? Vì sao ?

b) Tam giác ABC là tam giác gì ?

c) Tam giác ABC có đường trung tuyến AM bằng nửa cạnh BC. Hãy phát biểu tính chất tìm được ở câu b) dưới dạng một định lý.

Câu hỏi 4 trang 98 Toán 8 Tập 1 Bài 9 | Giải Toán 8 – TopLoigiai

Bài 7 Một đội công nhân đang trồng cây trên đoạn đường AB thì gặp chướng ngại vật che lấp tầm nhìn. Độ đã dựng các điểm C, D, E như trên hình vẽ rồi trồng cây tiếp trên đoạn đường EF vuông góc với DE. Vì sao AB và EF cùng nằm trên một đường thẳng.

Bài 8 Tìm x trên hình vẽ dưới đây.

Bài 9 Cho hình thang cân ABCD có AB // CD; AB < CD. Đường cao AH. Gọi M, N lần lượt là trung điểm của AD và BC. Tính độ dài đoạn MN biết HC = 5cm.

Bài 10 Cho ΔABC vuông tại A, từ điểm D trên cạnh huyền BC vẽ DE  AB, DF  AC. Gọi I là trung điểm của EF. Chứng minh ba điểm A, I, D thẳng hàng.

Bài 11 Cho ΔABC cân tại A. Từ điểm D trên đáy BC kẻ đường vuông góc với BC cắt AB ở E và AC ở F. Vẽ các hình chữ nhật DBHE và CDFK. Chứng minh rằng A là trung điểm của HK

Bài 12 Cho ΔABC cân tại A, đường cao BH. Từ điểm M trên cạnh BC kẻ MP  AB, MQ  AC. Chứng minh rằng MP + MQ = BH.

Bài 13 Cho ΔABC có góc B nhọn và B^=2C^. Kẻ đường cao AH, trên tia đối của tia BA lấy điểm D sao cho BD = BH, gọi I là giao điểm của DH và BC. Chứng minh rằng:

a) AI = IC

b) AD = HC

Bài 14 Cho hình thang cân ABCD có AB // CD, hai đường chéo AC và BD vuông góc với nhau. Chứng minh rằng chiều cao BH bằng đường trung bình MN.

Bài 15 Cho ΔABC vuông tại A, đường cao AH, trung tuyến AM và phân giác AD. Chứng minh rằng:

a) HAB^=MAC^

b) AD là tia phân giác của HAM^

c)  IH  HK

Xem thêm các bài Bài tập Toán lớp 8 hay, chi tiết khác:

Bài tập Hình bình hành

Bài tập Đối xứng tâm

Bài tập Đường thẳng song song với một đường thẳng cho trước

Bài tập Hình thoi

Bài tập Hình vuông

1 1,837 18/08/2022
Tải về


Xem thêm các chương trình khác: