50 Bài tập Những hằng đẳng thức đáng nhớ Toán 8 mới nhất
Với 50 Bài tập Những hằng đẳng thức đáng nhớ Toán lớp 8 mới nhất được biên soạn bám sát chương trình Toán 8 giúp các bạn học tốt môn Toán hơn.
Tài liệu gồm: 15 bài tập trắc nghiệm, 15 bài tập tự luận có lời giải và 20 bài tập vận dụng. Mời các bạn đón xem:
Bài tập Những hằng đẳng thức đáng nhớ
I. Bài tập trắc nghiệm
Bài 1: Điền vào chỗ trống: A = (x - y )2 = x2 - ... + y2
A. 2xy
B. xy
C. - 2xy
D. xy
Lời giải:
Áp dụng hằng đẳng thức (a - b)2 = a2 - 2ab + b2.
Khi đó ta có A = ( x - y )2 = x2 - 2.x.y + y2 = x2 - xy + y2.
Suy ra chỗ trống cần điền là xy.
Chọn đáp án B.
Bài 2: Điều vào chỗ trống: ... = ( 2x - 1 )( 4x2 + 2x + 1 ).
A. 1 - 8x3.
B. 1 - 4x3.
C. x3 - 8.
D. 8x3 - 1.
Lời giải:
Áp dụng hằng đẳng thức a3 - b3 = ( a - b )( a2 + ab + b2 )
Khi đó ta có ( 2x - 1 )( 4x2 + 2x + 1 )
= ( 2x - 1 )[ ( 2x )2 + 2x.1 + 1 ]
= ( 2x )3 - 1 = 8x3 - 1.
Suy ra chỗ trống cần điền là 8x3 - 1.
Chọn đáp án D.
Bài 3: Tính giá trị của biểu thức A = 8x3 + 12x2y + 6xy2 + y3 tại x = 2 và y = -1.
A. 1
B. 8
C. 27
D. -1
Lời giải:
Áp dụng hằng đẳng thức ( a + b )3 = a3 + 3a2b + 3ab2 + b3.
Khi đó ta có:
A = 8x3 + 12x2y + 6xy2 + y3
= ( 2x )3 + 3.( 2x )2.y + 3.( 2x ).y2 + y3
= ( 2x + y )3
Với x = 2 và y = -1 ta có A = ( 2.2 - 1 )3 = 33 = 27.
Chọn đáp án C.
Bài 4: Tính giá trị của biểu thức A = 352 - 700 + 102.
A. 252.
B. 152.
C. 452.
D. 202.
Lời giải:
Ta có A = 352 - 700 + 102 = 352 - 2.35.10 + 102
Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2.
Khi đó A = ( 35 - 10 )2 = 252.
Chọn đáp án A.
Bài 5: Giá trị của x thỏa mãn 2x2 - 4x + 2 = 0 là ?
A. x = 1.
B. x = - 1.
C. x = 2.
D. x = - 2.
Lời giải:
Ta có 2x2 - 4x + 2 = 0
⇔ 2( x2 - 2x + 1 ) = 0 ( 1 )
Áp dụng hằng đẳng thức ( a - b )2 = a2 - 2ab + b2
Khi đó ta có ( 1 ) ⇔ 2( x - 1 )2 = 0
⇔ x - 1 = 0
⇔ x = 1.
Chọn đáp án A.
Bài 6:
Lời giải:
Áp dụng hằng đẳng thức đáng nhớ:
Ta được:
Chọn đáp án A
Bài 7: Điền vào chỗ chấm:
Lời giải:
Chọn đáp án C
Bài 8: Rút gọn biểu thức: A = (x – 2y).(x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)
A. 2x3
B. -16y3
C. 16y3
D. –2x3
Lời giải:
Áp dụng hằng đẳng thức:
a3 – b3 = (a – b).(a2 + ab + b2) và a3 + b3 = (a + b).(a2 – ab + b2) ta được:
A = (x – 2y). (x2 + 2xy + y2) - (x + 2y). (x2 – 2xy + y2)
A = x3 – (2y)3 - [x3 + (2y)3]
A = x3 – 8y3 – x3 – 8y3 = -16y3
Chọn đáp án B
Bài 9: Tìm x biết x2 – 16 + x(x – 4) = 0
A. x = 2 hoặc x = - 4.
B. x = 2 hoặc x = 4.
C. x = -2 hoặc x = - 4.
D. x = -2 hoặc x = 4.
Lời giải:
Ta có: x2 – 16 + x(x – 4) = 0
⇔ (x + 4). (x - 4) + x.(x – 4) = 0
⇔ (x + 4 + x).(x - 4) = 0
⇔ (2x + 4). (x - 4) = 0
⇔ 2x + 4 = 0 hoặc x – 4 = 0
* Nếu 2x + 4 = 0 thì x = -2
* Nếu x – 4 =0 thì x = 4
Vậy x = -2 hoặc x = 4.
Chọn đáp án D
Bài 10: Rút gọn biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
A. 2x2 + 4xy
B. – 8y2 + 4xy
C. - 8y2
D. – 6y2 + 2xy
Lời giải:
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]
A = x2 – 4y2 – x2 + 4xy - 4y22
A = -8y2 + 4xy
Chọn đáp án B
Bài 11: Chọn câu đúng
A. (c + d)2 – (a + b)2 = (c + d + a + b)(c + d – a + b)
B. (c – d)2 – (a + b)2 = (c – d + a + b)(c – d – a + b)
C. (a + b + c – d)(a + b – c + d) = (a + b)2 – (c – d)2
D. (c – d)2 – (a – b)2 = (c – d + a – b)(c – d – a – b)
Lời giải:
Ta có:
(c + d)2 – (a + b)2 = (c + d + a + b)(c + d – (a + b)) = (c + d + a + b)(c + d – a – b) nên A sai
(c – d)2 – (a + b)2 = (c – d + a + b)[c – d – (a + b)] = (c – d + a + b)(c – d – a – b) nên B sai
(c – d)2 – (a – b)2 = (c – d + a – b)(c – d – (a – b)) = (c – d + a – b)(c – d – a + b) nên D sai
(a + b + c – d)(a + b – c + d) = [(a + b) + (c – d)][(a + b) – (c – d)] = (a + b)2 – (c – d)2 nên C đúng
Đáp án cần chọn là: C
Bài 12: Chọn câu đúng
A. 4 – (a + b)2 = (2 + a + b)(2 – a + b)
B. 4 – (a + b)2 = (4 + a + b)(4 – a – b)
C. 4 – (a + b)2 = (2 + a – b)(2 – a + b)
D. 4 – (a + b)2 = (2 + a + b)(2 – a – b)
Lời giải
Ta có 4 – (a + b)2 = 22 – (a + b)2
= (2 + a + b)[2 – (a + b)]
= (2 + a + b)(2 – a – b)
Đáp án cần chọn là: D
Bài 13: Rút gọn biểu thức A = (3x – 1)2 – 9x(x + 1) ta được
A. -15x + 1
B. 1
C. 15x + 1
D. – 1
Lời giải: Ta có
A = (3x – 1)2 – 9x(x + 1)
= (3x)2 – 2.3x.1 + 1 – (9x.x + 9x)
= 9x2 – 6x + 1 – 9x2 – 9x
= -15x + 1
Đáp án cần chọn là: A
Bài 14: Rút gọn biểu thức A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4), ta được:
A. 342
B. 243
C. 324
D. -324
Lời giải
Ta có
A = 5(x + 4)2 + 4(x – 5)2 – 9(4 + x)(x – 4)
= 5(x2 + 2.x.4 + 16) + 4(x2 – 2.x.5 + 52) – 9(x2 – 42)
= 5(x2 + 8x + 16) + 4(x2 – 10x + 25) – 9(x2 – 42)
= 5x2 + 40x + 80 + 4x2 – 40x + 100 – 9x2 + 144
= (5x2 + 4x2 – 9x2) + (40x – 40x) + (80 +100 + 144)
= 324
Đáp án cần chọn là: C
Bài 15: Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được
A. 0
B. 1
C. 19
D. – 19
Lời giải
B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7)
= 2a2 + 2a – 3a – 3 – (a2 – 8a + 16) – (a2 + 7a)
= 2a2 + 2a – 3a – 3 – a2 + 8a – 16 – a2 – 7a
= - 19
Đáp án cần chọn là: D
Bài 16: Cho B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1). Chọn câu đúng.
A. B < 12
B. B > 13
C. 12 < B< 14
D. 11 < B < 13
Lời giải
B = (x2 + 3)2 – x2(x2 + 3) – 3(x + 1)(x – 1).
= (x2)2 +2.x2.4 + 32 – (x2.x2 + x2.3) – 3(x2 – 1)
= x4 + 6x2 + 9 – x4 – 3x2 – 3x2 + 3 = 12
Đáp án cần chọn là: D
Bài 17: Cho . Tìm mối quan hệ giữa C và D.
A. D = 14C + 1
B. D = 14C
C. D = 14C – 1
D. D = 14C – 2
Lời giải
Ta có:
Vậy D = 29; C = 2 suy ra D = 14C + 1 (do 29 = 14.2 + 1)
Đáp án cần chọn là: A
Bài 18: Cho M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12x và N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14).
Tìm mối quan hệ giữa M và N
A. 2N – M = 60
B. 2M – N = 60
C. M> 0, N < 0
D. M > 0, N > 0
Lời giải
Ta có
M = 4(x + 1)2 + (2x + 1)2 – 8(x – 1)(x + 1) – 12
= 4(x2 + 2x + 1) + (4x2 + 4x + 1) – 8(x2 – 1) – 12x
= 4x2 + 8x + 4 + 4x2 + 4x + 1 – 8x2 +8 – 12x
= (4x2 + 4x2 – 8x2) + (8x + 4x – 12x) + 4 + 1 +8
= 13
N = 2(x – 1)2 – 4(3 + x)2 + 2x(x + 14)
= 2(x2 – 2x + 1) – 4(9 + 6x + x2) + 2x2 + 28x
= 2x2 – 4x + 2 – 36 – 24x – 4x2 + 2x2 + 28x
= (2x2 +2x2 – 4x2) + (-4x – 24x + 28x) + 2 – 36
= -34
Suy ra M = 13, N = -34 ⇔ 2M – N = 60
Đáp án cần chọn là: B
Bài 19: Có bao nhiêu giá trị x thỏa mãn (2x – 1)2 – (5x – 5)2 = 0
A. 0
B. 1
C. 2
D. 3
Lời giải
Vậy có hai giá trị của x thỏa mãn yêu cầu
Đáp án cần chọn là: C
Bài 20: Có bao nhiêu giá trị x thỏa mãn (2x + 1)2 – 4(x + 3)2 = 0
A. 0
B. 1
C. 2
D. 3
Lời giải
Ta có:
Vậy có một giá trị của x thỏa mãn yêu cầu.
Đáp án cần chọn là: B
II. Bài tập tự luận
Bài 1: Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a, | b, |
c, | d, |
e, | f, |
Lời giải:
a,
b,
c,
d,
e,
f,
Bài 2: Tính giá trị của biểu thức:
a, tại a = 2, b = 3
b, tại
c, tại x= 5
Lời giải:
a, Thay a = 2, b = 3 vào có:
b, Có
Thay có:
c, Có
Thay x = 5 có:
Bài 3: Tính:
a,
b,
Lời giải:
a,
b,
Bài 4
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) x2 + 2x + 1
b) 9x2 + y2 + 6xy;
c) 25a2 + 4b2 – 20ab;
d) x2 – x +
Đáp án và hướng dẫn giải:
a) x2 + 2x + 1 = x2+ 2.x.1 + 12
= (x + 1)2
b) 9x2 + y2+ 6xy = (3x)2 + 2.3. x.y + y.2 = (3x + y)2
c) 25a2 + 4b2– 20ab = (5a)2 – 2.5a.2b + (2b)2 = (5a – 2b)2
Hoặc 25a2 + 4b2 – 20ab = (2b)2 – 2.2b.5a + (5a)2 = (2b – 5a)2
d) x2 – x +
= x2 – 2.x.+ ()2
=(x - )2
Hoặc x2 – x +
= - x + x2 =()2 – 2. x + x2 = ( - x)2
Bài 5
Chứng minh rằng:
(10a + 5)2 = 100a . (a + 1) + 25.
Từ đó em hãy nêu cách tính nhẩm bình phương của một số tự nhiên có tận cùng bằng chữ số 5.
Áp dụng để tính: 252, 352, 652, 752.
Đáp án và hướng dẫn giải:
Ta có: (10a + 5)2 = (10a)2 + 2.10a.5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
652 = (10.6 + 5)2= 100.6(6+1) +25= 600.7 +25 =4200 +25= 4225
752 =(10.7+5)2 = 100.7(7+1) +25 = 700.8 +25=5600 +25 = 5625
Bài 6
Hãy tìm cách giúp bạn An khôi phục lại những hằng đẳng thức bị mực làm nhòe đi một số chỗ:
a) x2 + 6xy + … = (… + 3y)2;
b) … – 10xy + 25y2 = (… – …)2;
Hãy nêu một số đề bài tương tự.
Đáp án và hướng dẫn giải:
a) x2 + 6xy + … = (… + 3y)2 nên x2 + 2x . 3y + … = (…+3y)2
= x2 + 2x . 3y + (3y)2 = (x + 3y)2
Vậy: x2 + 6xy +9y2 = (x + 3y)2
b) …-2x . 5y + (5y)2 = (… – …)2;
x2 – 2x . 5y + (5y)2 = (x – 5y)2
Vậy: x2 – 10xy + 25y2 = (x – 5y)2
Bài 7:
Tính diện tích phần hình còn lại mà không cần đo.
Từ một miếng tôn hình vuông có cạnh bằng a + b, bác thợ cắt đi một miếng cũng hình vuông có cạnh bằng a – b (cho a > b). Diện tích phần hình còn lại là bao nhiêu? Diện tích phần hình còn lại có phụ thuộc vào vị trí cắt không?
Đáp án và hướng dẫn giải bài:
Diện tích của miếng tôn là (a + b)2
Diện tích của miếng tôn phải cắt là (a – b)2.
Phần diện tích còn lại là (a + b)2 – (a – b)2.
Ta có: (a + b)2 – (a – b)2 = a2 + 2ab + b2 – (a2 – 2ab + b2)
= a2 + 2ab + b2 – a2 + 2ab – b2
= 4ab
Vậy phần diện tích hình còn lại là 4ab và không phụ thuộc vào vị trí cắt.
Bài 8:
Nhận xét sự đúng, sai của kết quả sau:
x2 + 2xy + 4y2 = (x + 2y)2
Đáp án và hướng dẫn giải:
Nhận xét sự đúng, sai:
Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2
= x2 + 4xy + 4y2
Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.
Bài 9:
Viết các đa thức sau dưới dạng bình phương của một tổng hoặc một hiệu:
a) 9x2 – 6x + 1;
b) (2x + 3y)2 + 2.(2x + 3y) + 1.
Hãy nêu một đề bài tương tự.
Đáp án và hướng dẫn giải:
a) 9x2 – 6x + 1 = (3x)2 – 2 . 3x . 1 + 12 = (3x – 1)2
Hoặc 9x2 – 6x + 1 = 1 – 6x + 9x2 = (1 – 3x)2
b) (2x + 3y) = (2x + 3y)2 + 2 . (2x + 3y) . 1 + 12
= [(2x + 3y) + 1]2
= (2x + 3y + 1)2
Đề bài tương tự. Chẳng hạn:
1 + 2(x + 2y) + (x + 2y)2
4x2 – 12x + 9…
16x2 y4 – 8xy2 +1
Bài 10
Tính nhanh:
a) 1012; b) 1992; c) 47.53.
Đáp án và hướng dẫn giải:
a) 1012 = (100 + 1)2 = 1002 + 2 . 100 + 1 = 10201
b) 1992= (200 – 1)2 = 2002 – 2 . 200 + 1 = 39601
c) 47.53 = (50 – 3)(50 + 3) = 502 – 32 = 2500 – 9 = 2491.
III. Bài tập vận dụng
Bài 1:
Chứng minh rằng:
(a + b)2 = (a – b)2 + 4ab;
(a – b)2 = (a + b)2 – 4ab.
Áp dụng:
a) Tính (a – b)2, biết a + b = 7 và a . b = 12.
b) Tính (a + b)2, biết a – b = 20 và a . b = 3.
Bài 2:
Tính giá trị của biểu thức 49x2 – 70x + 25 trong mỗi trường hợp sau:
a) x = 5;
b) x = 1/7.
Bài 3:
Tính:
a) (a + b + c)2; b) (a + b – c)2;
c) (a – b – c)2
Bài 4. Áp dụng hằng đẳng thức để tính nhanh
a) = b) 29,9. 30,1 =
c) – 2.31,8.21,8 + =
Bài 5. Điền vào ô trống để trở thành hằng đẳng thức:
Ví dụ : 36 + 24x + ………..=
Phân tích : 36 = và 24x = 2. 6x. 2, từ đó phần còn thiếu là = 4
Đáp án : 36 + 24x + 4 =
a) + 20x + …….. =
b) 16 + 24x + ……..=
c) – ………. + 49 =
d) …………- 42xy + 49 =
e) + ………..+ 4 =
f) 4 +…………..+ 1 =
g) (2a +3b)( – + ) = 8 + 27
h) (5x – )( + 20xy + ) = 125 – 64
Bài 6. Viết mỗi biểu thức sau dưới dạng tổng của hai bình phương
Ví dụ : – 2xy + 2 +2y +1 = ( – 2xy + ) + ( +2y +1) = +
a) + 10x + 26 + +2y =
b) – 6z + 13 + +4t =
c) 4 – 4xz + 1 + 2 -2z =
Bài 7. Tìm giá trị lớn nhất của biểu thức:
a) C = 4x – + 3
Tìm giá trị nhỏ nhất của biểu thức:
a) A = – 6x + 11
b) B = – 4x + – 8y + 6
Bài 8. Chứng minh các biểu thức sau luôn dương với mọi giá trị của biến
D = – 8x +19
Chứng minh các biểu thức sau luôn âm với mọi giá trị của biến
E = – + 2x – 7
Bài 9. Khai triển hằng đẳng thức dạng và
= + 2.A.B + = – 2.A.B +
Bài 10. Khai triển hằng đẳng thức dạng và
Xem thêm các bài Bài tập Toán lớp 8 hay, chi tiết khác:
Bài tập Nhân đơn thức với đa thức
Bài tập Những hằng đẳng thức đáng nhớ
Bài tập Phân tích đa thức thành nhân tử
Bài tập Chia đơn thức cho đơn thức
Bài tập Chia đa thức cho đơn thức
Xem thêm các chương trình khác:
- Tóm tắt tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 8 (hay nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Soạn văn 8 (ngắn nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Văn mẫu lớp 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Hóa học 8
- Giải sbt Hóa học 8
- Giải vở bài tập Hóa học 8
- Lý thuyết Hóa học 8
- Các dạng bài tập Hóa học lớp 8
- Giải sgk Vật Lí 8
- Giải sbt Vật Lí 8
- Lý thuyết Vật Lí 8
- Giải vở bài tập Vật lí 8
- Giải sgk Tiếng Anh 8 (sách mới) | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2
- Giải sgk Tiếng Anh 8 | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 8 (sách mới) | Sách bài tập Tiếng Anh 8
- Giải sbt Tiếng Anh 8 (thí điểm)
- Giải sgk Tin học 8 | Giải bài tập Tin học 8 Học kì 1, Học kì 2 (sách mới)
- Giải sgk Lịch Sử 8 | Giải bài tập Lịch sử 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch sử 8 (sách mới) | Kiến thức trọng tâm Lịch sử 8
- Giải vở bài tập Lịch sử 8
- Giải Tập bản đồ Lịch sử 8
- Đề thi Lịch Sử 8
- Giải vở bài tập Sinh học 8
- Giải sgk Sinh học 8
- Lý thuyết Sinh học 8
- Giải sgk Giáo dục công dân 8 | Giải bài tập Giáo dục công dân 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Giáo dục công dân 8 (sách mới) | Kiến thức trọng tâm GDCD 8
- Lý thuyết Địa Lí 8 (sách mới) | Kiến thức trọng tâm Địa Lí 8
- Giải sgk Địa Lí 8 | Giải bài tập Địa Lí 8 Học kì 1, Học kì 2 (sách mới)
- Giải Tập bản đồ Địa Lí 8
- Đề thi Địa lí 8