Toán 12 Bài 3 (Chân trời sáng tạo): Biểu thức toạ độ của các phép toán vectơ
Với giải bài tập Toán lớp 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 12 Bài 3.
Giải Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ
Lời giải:
Trong không gian Oxyz, ta có thể thực hiện các phép toán vectơ dựa trên tọa độ của chúng tương tự như đã làm trên mặt phẳng tọa độ.
1. Biểu thức tọa độ của tổng, hiệu hai vectơ và tích của một số với một vectơ
Hoạt động khám phá 1 trang 58 Toán 12 Tập 1: Trong không gian Oxyz, cho hai vectơ , với số thực m.
a) Biểu diễn từng vectơ và theo ba vectơ .
b) Biểu diễn các vectơ theo ba vectơ , từ đó suy ra tọa độ của các vectơ .
Lời giải:
a) ; .
Suy ra .
Suy ra
Thực hành 1 trang 59 Toán 12 Tập 1: Cho ba vectơ .
c) Chứng minh cùng phương với vectơ .
Lời giải:
a) .
Khi đó .
b) .
Khi đó = (0; −27; 3).
c) Có .
Do đó cùng phương với vectơ .
a) Tìm tọa độ của vectơ tổng hai vận tốc và .
Lời giải:
a) .
b) Vì .
Do đó hai vectơ này cùng phương, cùng hướng với nhau.
2. Biểu thức tọa độ của tích vô hướng
Hoạt động khám phá 2 trang 59 Toán 12 Tập 1: Cho hai vectơ và .
a) Biểu diễn từng vectơ và theo ba vectơ .
c) Tính tích vô hướng theo tọa độ của hai vectơ và .
Lời giải:
a) và .
b)
c)
Thực hành 2 trang 60 Toán 12 Tập 1: Cho ba vectơ , , .
c) Cho . Vectơ có vuông góc với không?
Lời giải:
a) .
b)
c) Có . Do đó .
Lời giải:
Công sinh bởi lực được tính theo công thức
J.
3. Vận dụng
Lời giải:
Ta có .
Do đó .
Thực hành 3 trang 61 Toán 12 Tập 1: Cho ba điểm M(7; −2; 0), N(−9; 0; 4), P(0; −6; 5).
b) Tính các độ dài MN, NP, MP.
Lời giải:
a) ;
;
.
b) .
.
.
Lời giải:
Ta có .
Có
Do đó .
Do đó .
a) Các điểm M', N', P' lần lượt là trung điểm của các cạnh NP, MP, MN;
b) Trọng tâm G của tam giác M'N'P'.
Lời giải:
a) Tọa độ trung điểm M' của cạnh NP là
hay .
Tọa độ trung điểm N' của cạnh MP là
hay .
Tọa độ trung điểm P' của cạnh MN là
hay .
b) Tọa độ trọng tâm G là:
hay .
b) Trung điểm M của SB và trung điểm N của SC.
c) Trọng tâm G của tam giác SBC.
Lời giải:
a)
Vì ABC là tam giác đều cạnh a, O là trung điểm của BC nên AO là đường cao.
Suy ra và OB = OC = .
Vì và cùng hướng và nên . Suy ra .
Vì và ngược hướng và nên . Suy ra .
Vì và cùng hướng và nên . Suy ra
Gọi I là hình chiếu của S trên Oz.
Ta có OI = SA.
Vì OI và cùng hướng và OI = a nên .
Theo quy tắc hình bình hành có: .
Do đó .
b) Tọa độ trung điểm M của SB là
hay .
Tọa độ trung điểm N của SC là
hay .
c) Tọa độ trọng tâm G của tam giác SBC là:
hay .
Thực hành 5 trang 63 Toán 12 Tập 1: Cho tam giác MNP có M(0; 1; 2), N(5; 9; 3), P(7; 8; 2).
a) Tìm tọa độ điểm K là chân đường cao kẻ từ M của tam giác MNP.
Lời giải:
a) Ta có .
Vì K là chân đường vuông góc kẻ từ M xuống NP nên K NP và MK NP.
Gọi K(x; y; z), ta có .
Vì và cùng phương nên tồn tại t ℝ sao cho .
Do đó . Suy ra K(7 – 2t; 8 + t; 2 + t).
Khi đó .
Vì MK NP nên
Vậy .
b) Ta có ; .
; .
c) Ta có
a) Các khoảng cách giữa mỗi cặp drone giao hàng.
Lời giải:
a) Ta có ; ; .
Khi đó: ;
;
.
b) Ta có .
Bài tập
Bài 1 trang 64 Toán 12 Tập 1: Tính:
Lời giải:
a) .
b) .
Bài 2 trang 64 Toán 12 Tập 1: Cho hai vectơ và . Tìm tọa độ của vectơ .
Lời giải:
Có ; .
Tọa độ của vectơ là hay .
Bài 3 trang 64 Toán 12 Tập 1: Cho ba điểm A(2; 1; −1), B(3; 2; 0) và C(2; −1; 3).
a) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính chu vi tam giác ABC.
b) Tìm tọa độ trung điểm của các cạnh của tam giác ABC.
c) Tìm tọa độ trọng tâm G của tam giác ABC.
Lời giải:
a) Ta có .
Vì và không cùng phương nên A, B, C không thẳng hàng.
Do đó A, B, C là ba đỉnh của một tam giác.
Ta có chu vi tam giác ABC là:
AB + AC + BC
=
b) Gọi M, N, P lần lượt là trung điểm của cạnh AB, BC, CA.
Tọa độ điểm M là
hay .
Tọa độ điểm N là
hay .
Tọa độ điểm P là
hay .
c) Tọa độ trọng tâm G của tam giác ABC là
hay .
Bài 4 trang 64 Toán 12 Tập 1: Cho điểm M(1; 2; 3). Hãy tìm tọa độ của các điểm:
a) M1, M2, M3 lần lượt là hình chiếu vuông góc của M trên các mặt phẳng (Oxy), (Oyz), (Oxz).
b) Gọi M', M", M"' lần lượt là các điểm thỏa mãn:
• MM" vuông góc với mặt phẳng (Oxy) tại điểm H sao cho H là trung điểm của MM".
• MM"' vuông góc và cắt trục Oy tại điểm K sao cho K là trung điểm của MM"'.
Lời giải:
a) Ta có M1(1; 2; 0), M2(0; 2; 3), M3(1; 0; 3).
b) +) Vì O là trung điểm của MM' nên
Vậy M'(−1; −2; −3).
+) Vì H (Oxy) nên H(x; y; 0).
Ta có .
Vì MH (Oxy)
Do đó H(1; 2; 0).
Vì H là trung điểm của MM" nên
Vậy M"(1; 2; −3).
+) Vì K Oy nên K(0; y; 0)
Vì nên . Do đó K(0; 2; 0).
Vì K là trung điểm của MM"' nên
Vậy M'''(−1; 2; −3).
Bài 5 trang 64 Toán 12 Tập 1: Cho ba điểm A(3; 3; 3), B(1; 1; 2) và C(5; 3; 1).
a) Tìm điểm M trên trục Oy cách đều hai điểm B, C.
b) Tìm điểm N trên mặt phẳng (Oxy) cách đều ba điểm A, B, C.
Lời giải:
a) Vì M Oy nên M(0; y; 0).
Vì M cách đều hai điểm B, C nên MB = MC hay MB2 = MC2
Vậy .
b) Vì N (Oxy) nên N(x; y; 0).
Vì N cách đều ba điểm A, B, C nên NA = NB = NC hay NA2 = NB2 = NC2
Vậy .
Lời giải:
Ta có , , .
Vì nên và cùng phương.
Mặt khác và không cùng phương nên CD // AB.
Do đó ABCD là hình thang.
Lời giải:
Do ABCD.A'B'C'D' là hình hộp nên các mặt là hình bình hành.
Ta có .
Vậy C(2; 0; 2).
Ta có .
Vậy D'(3; 4; −6).
Ta có .
Vậy A'(3; 5; −6).
Ta có .
Vậy B'(4; 6; −5).
Lời giải:
Lời giải:
Công sinh bởi lực là = 20.150 + 30.200 + (-10).100 = 8000 J.
Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Toạ độ của vectơ trong không gian
Bài tập cuối chương 2 trang 65
Bài 1: Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm
Bài 2: Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm
Xem thêm các chương trình khác:
- Soạn văn 12 Chân trời sáng tạo (hay nhất)
- Văn mẫu 12 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn 12 - Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 12 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh lớp 12 Friends Global đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh lớp 12 Friends Global đầy đủ nhất
- Giải sbt Tiếng Anh 12 – Friends Global
- Giải sgk Lịch sử 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 12 – Chân trời sáng tạo
- Giải sbt Lịch sử 12 – Chân trời sáng tạo
- Giải sgk Địa lí 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 12 – Chân trời sáng tạo
- Giải sbt Địa lí 12 – Chân trời sáng tạo
- Giải sgk Tin học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Tin học 12 – Chân trời sáng tạo
- Giải sbt Tin học 12 – Chân trời sáng tạo
- Lý thuyết Tin học 12 - Chân trời sáng tạo
- Giải sgk Công nghệ 12 – Chân trời sáng tạo
- Giải sgk Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải sgk Giáo dục quốc phòng 12 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 12 – Chân trời sáng tạo
- Giải sgk Vật lí 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 12 – Chân trời sáng tạo
- Lý thuyết Vật lí 12 – Chân trời sáng tạo
- Giải sbt Vật lí 12 – Chân trời sáng tạo
- Giải sgk Hóa học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa 12 – Chân trời sáng tạo
- Lý thuyết Hóa 12 – Chân trời sáng tạo
- Giải sbt Hóa 12 – Chân trời sáng tạo
- Giải sgk Sinh học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 12 – Chân trời sáng tạo
- Lý thuyết Sinh học 12 – Chân trời sáng tạo
- Giải sbt Sinh học 12 – Chân trời sáng tạo