Cho ba điểm A(2; 1; −1), B(3; 2; 0) và C(2; −1; 3). a) Chứng minh A, B, C là ba đỉnh của một tam giác

Lời giải Bài 3 trang 64 Toán 12 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 1,022 16/06/2024


Giải Toán 12 Chân trời sáng tạo Bài 3: Biểu thức toạ độ của các phép toán vectơ

Bài 3 trang 64 Toán 12 Tập 1: Cho ba điểm A(2; 1; −1), B(3; 2; 0) và C(2; −1; 3).

a) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính chu vi tam giác ABC.

b) Tìm tọa độ trung điểm của các cạnh của tam giác ABC.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

Lời giải:

a) Ta có AB=1;1;1,AC=0;2;4,BC=1;3;3 .

ABAC không cùng phương nên A, B, C không thẳng hàng.

Do đó A, B, C là ba đỉnh của một tam giác.

Ta có chu vi tam giác ABC là:

AB + AC + BC

= 12+12+12+02+22+42+12+32+32

=3+25+19

b) Gọi M, N, P lần lượt là trung điểm của cạnh AB, BC, CA.

Tọa độ điểm M là

M2+32;1+22;1+02 hay M52;32;12 .

Tọa độ điểm N là

N3+22;212;0+32 hay N52;12;32 .

Tọa độ điểm P là

P2+22;112;1+32 hay P2;0;1 .

c) Tọa độ trọng tâm G của tam giác ABC là

G2+3+23;1+213;1+0+33 hay G73;23;23 .

1 1,022 16/06/2024


Xem thêm các chương trình khác: