Toán 12 Bài 2 (Chân trời sáng tạo): Toạ độ của vectơ trong không gian
Với giải bài tập Toán lớp 12 Bài 2: Toạ độ của vectơ trong không gian sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 12 Bài 2.
Giải Toán 12 Bài 2: Toạ độ của vectơ trong không gian
Lời giải:
Xây dựng hệ tọa độ trong không gian tương tự như trong mặt phẳng, sử dụng bộ ba số để xác định hoành độ, tung độ và cao độ.
1. Hệ tọa độ trong không gian
Hoạt động khám phá 1 trang 52 Toán 12 Tập 1: Cho hình lập phương OABC.O'A'B'C' có cạnh bằng 1. Đặt .
a) Nêu nhận xét về phương và độ dài của ba vectơ .
b) Nêu nhận xét về ba trục tọa độ .
Lời giải:
a) Ba vectơ có phương đôi một vuông góc với nhau và có cùng độ dài bằng 1.
b) Ba trục tọa độ có cùng gốc tọa độ là O và có vectơ đơn vị lần lượt là .
Lời giải:
Trục Ox có vectơ đơn vị là .
Trục Oy có vectơ đơn vị là .
Trục Oz có vectơ đơn vị là .
Lời giải:
a)
b) ; ; ;
Có .
2. Tọa độ của điểm và vectơ
Lời giải:
Vì và cùng hướng, OA = 3 nên .
Tương tự, ta có: .
Vì OABC.O'A'B'C' là hình hộp chữ nhật nên theo quy tắc hình hộp, ta có:
.
Lời giải:
Vì và cùng hướng và OB = 5 nên .
Tương tự, ta có .
Theo quy tắc hình bình hành, ta có: .
Theo quy tắc hình hộp, ta có: .
Do đó B(5; 0; 0), C(5; 5; 0), C'(5; 5; 5).
Lời giải:
Ta có .
Mà nên .
b) Trong hệ tọa độ nói trên, tìm tọa độ các vectơ và với M là trung điểm của cạnh SC.
Lời giải:
a)
Ba vectơ đơn vị trên ba trục tọa độ lần lượt là với độ dài của lần lượt bằng .
b) Ta có: .
Do đó , , .
Theo quy tắc hình bình hành, ta có .
Vì M là trung điểm của SC nên .
Do đó .
Lời giải:
Vì N (Oxy) nên N(x; y; 0).
Xét NBO vuông tại B, ta có: và x2 + y2 = ON2 (1).
Xét OMC có ON = MC = OM.sin65° = 14. sin65° ≈ 12,67 (2).
Từ (1) và (2), ta có hệ:
Suy ra N(6,68; 10,77; 0). Do đó
Xét OMC vuông tại C, ta có:
Suy ra C(0; 0; 5,92). Do đó .
Ta có .
Vậy M(6,68; 10,77; 5,92).
Bài tập
Bài 1 trang 56 Toán 12 Tập 1: Trong không gian Oxyz, biết
Lời giải:
a) .
b) .
Bài 2 trang 56 Toán 12 Tập 1: Trong không gian Oxyz, biết:
Lời giải:
a) , .
b) .
b) Tìm tọa độ các điểm A, B, C, S.
Lời giải:
a)
Các vectơ đơn vị trên ba trục Ox, Oy, Oz lần lượt là với độ dài của lần lượt bằng .
b) Vì B trùng với gốc tọa độ nên B(0; 0; 0).
Vì và cùng hướng và BA = 2 nên . Suy ra A(0; 2; 0).
Vì và cùng hướng và BC = 3 nên . Suy ra C(3; 0; 0).
Gọi E là hình chiếu của S lên trục Oz.
Ta có BE = AS = 2.
Vì và cùng hướng và BE = 2 nên .
Theo quy tắc hình bình hành ta có:
. Suy ra S(0; 2; 2).
Lời giải:
Các vectơ đơn vị trên các trục Ox, Oy, Oz lần lượt là với E là điểm thuộc tia Oy sao cho OE = 1 và H là điểm thuộc tia Oz sao cho OH = 1.
Vì ABC đều và AO BC nên O là trung điểm của BC.
Mà BC = 2 nên OB = OC = 1 và .
Vì và ngược hướng và OB = 1 nên . Suy ra B(−1; 0; 0).
Vì và cùng hướng và OC = 1 nên . Suy ra C(1; 0; 0).
Vì và cùng hướng và nên . Suy ra .
Theo quy tắc hình bình hành, ta có . Suy ra .
Lời giải:
Vì ABCD là hình thoi cạnh bằng 5, O là giao điểm của AC và BD nên O là trung điểm của AC và BD.
Xét OAB vuông tại O, có .
Vì và cùng hướng và OB = 3 nên .
Vì và cùng hướng và OA = 4 nên .
Ta có . Do đó .
Có AC = 2OA = 8 mà và cùng hướng nên . Do đó .
Có và cùng hướng và OS = 4 nên .
Có . Do đó .
Lại có . Do đó .
Vì M là trung điểm của SC nên .
Do đó .
Lời giải:
Vì và cùng hướng và OA = 10 nên .
Xét OBH vuông tại H, có BH = OB.sin30° = 7,5 m.
OH = OB.cos30° = m.
Vì và cùng hướng và nên .
Có BH = OK = 7,5.
Vì và cùng hướng và OK = 7,5 nên .
Vì
Vậy .
Lời giải:
Giả sử M(x; y; z).
H (Oxy) H(x; y; 0).
Vì OBHA là hình bình hành nên BH = OA.
Vì OCMH là hình bình hành nên OC = MH.
Xét MHO vuông tại H, có OH = OM.cos48° = 50. cos48° ≈ 33,46.
MH = OM.sin48° = 50. sin48° ≈ 37,16.
Xét OAH vuông tại A, có BH = OA = OH.cos64° = 33,46. cos64° ≈ 14,67.
Xét OBH vuông tại B, có .
Vì và cùng hướng và OA = 14,67 nên .
Vì và cùng hướng và OB = 30,07 nên .
Vì và cùng hướng và OC = 37,16 nên .
Áp dụng quy tắc hình bình hành, ta có:
Vậy M(14,67; 30,07; 27,16).
Xem thêm các bài giải sách giáo khoa Toán 12 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Vectơ và các phép toán trong không gian
Bài 3: Biểu thức toạ độ của các phép toán vectơ
Bài tập cuối chương 2 trang 65
Bài 1: Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm
Bài 2: Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm
Xem thêm các chương trình khác:
- Soạn văn 12 Chân trời sáng tạo (hay nhất)
- Văn mẫu 12 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn 12 - Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn 12 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 12 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh lớp 12 Friends Global đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh lớp 12 Friends Global đầy đủ nhất
- Giải sbt Tiếng Anh 12 – Friends Global
- Giải sgk Lịch sử 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 12 – Chân trời sáng tạo
- Giải sbt Lịch sử 12 – Chân trời sáng tạo
- Giải sgk Địa lí 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 12 – Chân trời sáng tạo
- Giải sbt Địa lí 12 – Chân trời sáng tạo
- Giải sgk Tin học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Tin học 12 – Chân trời sáng tạo
- Giải sbt Tin học 12 – Chân trời sáng tạo
- Lý thuyết Tin học 12 - Chân trời sáng tạo
- Giải sgk Công nghệ 12 – Chân trời sáng tạo
- Giải sgk Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 12 – Chân trời sáng tạo
- Giải sgk Giáo dục quốc phòng 12 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 12 – Chân trời sáng tạo
- Giải sgk Vật lí 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 12 – Chân trời sáng tạo
- Lý thuyết Vật lí 12 – Chân trời sáng tạo
- Giải sbt Vật lí 12 – Chân trời sáng tạo
- Giải sgk Hóa học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa 12 – Chân trời sáng tạo
- Lý thuyết Hóa 12 – Chân trời sáng tạo
- Giải sbt Hóa 12 – Chân trời sáng tạo
- Giải sgk Sinh học 12 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 12 – Chân trời sáng tạo
- Lý thuyết Sinh học 12 – Chân trời sáng tạo
- Giải sbt Sinh học 12 – Chân trời sáng tạo