Sách bài tập Toán 11 Bài 5 (Chân trời sáng tạo): Phương trình lượng giác cơ bản
Với giải sách bài tập Toán 11 Bài 5: Phương trình lượng giác cơ bản sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 5.
Giải SBT Toán 11 Bài 5: Phương trình lượng giác cơ bản
Bài 1 trang 30 SBT Toán 11 Tập 1: Giải các phương trình lượng giác sau:
a)
b) cos(2x ‒ 30°) = ‒1;
c) 3sin(‒2x + 17°) = 4;
d)
e)
g)
Lời giải:
a)
hoặc
hoặc
Vậy phương trình có nghiệm là và
b) cos(2x ‒ 30°) = ‒1
⇔ 2x ‒ 30° = 180° + k360° (k ∈ ℤ)
⇔ 2x = 210 + k360° (k ∈ ℤ)
⇔ x = 105° + k180° (k ∈ ℤ)
Vậy phương trình có nghiệm là x = 105° + k180° (k ∈ ℤ).
c) 3sin(‒2x + 17°) = 4
Do nên phương trình vô nghiệm.
d)
hoặc
hoặc
hoặc
Vậy phương trình có nghiệm là và
e)
Vậy phương trình có nghiệm là
g)
Vậy phương trình có nghiệm là
Bài 2 trang 31 SBT Toán 11 Tập 1: Giải các phương trình lượng giác sau:
a) cos(2x + 10°) = sin(50° ‒ x);
b) 8sin3x + 1 = 0;
c) (sinx + 3)(cotx ‒ 1) = 0;
d) tan(x ‒ 30°) ‒ cot50° = 0.
Lời giải:
a) cos(2x + 10°) = sin(50° ‒ x)
⇔ cos(2x + 10°) = cos(x + 40°)
⇔ 2x + 10° = x + 40°+ k360°, k ∈ ℤ hoặc 2x + 10° = ‒x ‒ 40°+ k360°, k ∈ ℤ
⇔ x = 30° + k360°, k ∈ ℤ hoặc .
Vậy phương trình có các nghiệm là x = 30° + k360°, k ∈ ℤvà
b) 8sin3x + 1 = 0
hoặc
hoặc
Vậy phương trình có các nghiệm là và .
c) (sinx + 3)(cotx ‒ 1) = 0
⇔ sinx + 3 = 0 hoặc cotx ‒ 1 = 0
⇔ sinx = ‒3 hoặc cotx = 1
Phương trình sinx = ‒3 vô nghiệm.
Phương trình cotx = 1 có nghiệm là .
Vậy phương trình có các nghiệm là .
d) tan(x ‒ 30°) ‒ cot50° = 0
⇔ tan(x ‒ 30°) = cot50°
⇔ tan(x ‒ 30°) = tan40°
⇔ x ‒ 30° = 40° + k180°, k ∈ ℤ
⇔ x = 70° + k180°, k ∈ ℤ
Vậy phương trình có các nghiệm là x = 70° + k180°, k ∈ ℤ.
Bài 3 trang 31 SBT Toán 11 Tập 1: Giải các phương trình lượng giác sau:
b) 2cos2x + 5sinx ‒ 4 = 0;
c)
Lời giải:
a)
hoặc
Vậy phương trình có các nghiệm là
b) 2cos2x + 5sinx ‒ 4 = 0
⇔ 2(1 ‒ sin2x) + 5sinx ‒ 4 = 0
⇔ ‒2sin2x + 5sinx ‒ 2 = 0
⇔ sinx = 2 (vô nghiệm) hoặc sinx =
⇔ sinx = hoặc
hoặc
Vậy phương trình có các nghiệm và
c)
hoặc
hoặc
Vậy phương trình có các nghiệm là và
Bài 4 trang 31 SBT Toán 11 Tập 1: Tìm tập xác định của hàm số lượng giác
Lời giải:
Hàm số xác định khi và chỉ khi
Ta có
hoặc
hoặc
hoặc
(do và có cùng điểm biểu diễn trên đường tròn lượng giác.)
Do đó khi và chỉ khi và
Bài 5 trang 31 SBT Toán 11 Tập 1: Tìm các nghiệm của mỗi phương trình sau trong khoảng (‒π; π).
a)
b)
c)
Lời giải:
a)
Lại có x ∈ (‒π; π) nên ta có:
Mà k ∈ ℤ nên k ∈ {–1; 0; 1}.
Với k = ‒1, ta có:
Với k = 0, ta có:
Với k = 1, ta có:
Vậy phương trình có nghiệm
b)
hoặc
hoặc
hoặc
Lại có x ∈ (‒π; π) nên ta có:
⦁
Mà k ∈ ℤ nên k ∈ {–1; 0}.
⦁
Mà k ∈ ℤ nên k ∈ {–1; 0}.
Với k = ‒1, ta có hoặc
Với k = 0, ta có hoặc
Vậy phương trình có nghiệm
c)
Lại có x ∈ (‒π; π) nên ta có:
Mà k ∈ ℤ nên k ∈ {–1; 0}.
Với k = −1, ta có:
Với k = 0, ta có:
Vậy phương trình có nghiệm
Bài 6 trang 31 SBT Toán 11 Tập 1: Tìm hoành độ các giao điểm của đồ thị các hàm số sau:
Lời giải:
a) Hoành độ các giao điểm của đồ thị 2 hàm số là nghiệm của phương trình:
hoặc
hoặc
Vậy hoành độ các giao điểm của đồ thị 2 hàm số là: và
b) Hoành độ các giao điểm của đồ thị 2 hàm số là nghiệm của phương trình:
hoặc
hoặc
Vậy hoành độ các giao điểm của đồ thị 2 hàm số là: và .
Bài 7 trang 31 SBT Toán 11 Tập 1: Tìm hoành độ các giao điểm của đồ thị hàm số với trục hoành.
Lời giải:
Hoành độ các giao điểm của đồ thị hàm số với trục hoành là nghiệm của phương trình:
hoặc
và .
Vậy hoành độ các giao điểm của đồ thị hàm số với trục hoành là và .
Lời giải:
Vì tỉ số là một hằng số phụ thuộc vào chiết suất của hai môi trường nên ta có:
nên . Suy ra r ≈ 37,76°.
b) Nếu tốc độ ban đầu của bóng là 10 m/s thì cần ném bóng với góc bao nhiêu độ để khoảng cách d là 5 m?
Lời giải:
a) Khoảng cách d khi bóng được ném đi với tốc độ ban đầu 10 m/s và góc ném là 30° so với phương ngang là:
d = (m)
b) Từ d = suy ra
Để khoảng cách d là 5 m thì ta có
⇔ 2α = 30° hoặc 2α = 150° (do 0° ≤ α ≤ 90°)
⇔ α = 15° hoặc α = 75°.
Vậy cần ném bóng với góc 15° hoặc 75° để khoảng cách d là 5 m.
a) Cabin đạt độ cao tối đa là bao nhiêu?
b) Sau bao nhiêu giây thì cabin đạt độ cao 40 m lần đầu tiên?
Lời giải:
a) Với mọi t > 0, ta có
Hay 10 ≤ h(t) ≤ 50
Vậy cabin đạt độ cao tối đa là 50 (m).
b) Thời gian để cabin đạt độ cao 40 m lần đầu tiên là nghiệm của phương trình:
với t > 0 và t đạt giá trị nhỏ nhất.
Giải phương trình:
30 + = 40
hoặc
hoặc
⦁ Xét và t > 0, ta có:
, k ∈ ℤ nên k ∈ {1; 2; …}
Mà t đạt giá trị nhỏ nhất nên với k = 1.
⦁ Xét và t > 0, ta có:
, k ∈ ℤ nên k ∈ {0; 1; 2; …}
Mà t đạt giá trị nhỏ nhất nên với k = 0.
Do 12,5 < 45,8 nên sau 12,5 giây thì cabin đạt độ cao 40 m lần đầu tiên.
Lý thuyết Phương trình lượng giác cơ bản
1. Phương trình tương đương
- Hai phương trình được gọi là tương đương khi chúng có cùng tập nghiệm.
- Nếu phương trình f(x) =0 tương đương với phương trình g(x) =0 thì ta viết
- Các phép biến đổi tương đương:
+ Cộng hay trừ hai vế với cùng một số hoặc cùng một biểu thức.
+ Nhân hoặc chia 2 vế với cùng một số khác 0 hoặc với cùng một biểu thức luôn có giá trị khác 0.
2. Phương trình
Phương trình sinx = m ,
- Nếu thì phương trình vô nghiệm.
- Nếu thì phương trình có nghiệm:
Khi đó, tồn tại duy nhất thoả mãn ,
* Chú ý:
a, Nếu số đo của góc được cho bằng đơn vị độ thì
b, Một số trường hợp đặc biệt
3. Phương trình
Phương trình ,
- Nếu thì phương trình vô nghiệm.
- Nếu thì phương trình có nghiệm:
Khi sẽ tồn tại duy nhất thoả mãn . Khi đó:
* Chú ý:
a, Nếu số đo của góc được cho bằng đơn vị độ thì
b, Một số trường hợp đặc biệt
4. Phương trình
Phương trình có nghiệm với mọi m.
Với mọi , tồn tại duy nhất thoả mãn . Khi đó:
*Chú ý: Nếu số đo của góc được cho bằng đơn vị độ thì
5. Phương trình
Phương trình có nghiệm với mọi m.
Với mọi , tồn tại duy nhất thoả mãn . Khi đó:
*Chú ý: Nếu số đo của góc được cho bằng đơn vị độ thì
6. Giải phương trình lượng giác bằng máy tính cầm tay
Bước 1. Chọn đơn vị đo góc (độ hoặc radian).
Muốn tìm số đo độ, ta ấn: SHIFT MODE 3 (CASIO FX570VN).
Muốn tìm số đo radian, ta ấn: SHIFT MODE 4 (CASIO FX570VN).
Bước 2. Tìm số đo góc.
Khi biết SIN, COS, TANG của góc ta cần tìm bằng m, ta lần lượt ấn các phím SHIFT và một trong các phím SIN, COS, TANG rồi nhập giá trị lượng giác m và cuối cùng ấn phím “BẰNG =”. Lúc này trên màn hình cho kết quả là số đo của góc .
Xem thêm lời giải SBT Toán lớp 11 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Giá trị lượng giác của một góc lượng giác
Bài 3: Các công thức lượng giác
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo