Giải các phương trình lượng giác sau: a) cos(2x + 10 độ) = sin(50 độ ‒ x)

Lời giải Bài 2 trang 31 SBT Toán 11 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 2,108 07/11/2023


Giải SBT Toán 11 Bài 5: Phương trình lượng giác cơ bản

Bài 2 trang 31 SBT Toán 11 Tập 1: Giải các phương trình lượng giác sau:

a) cos(2x + 10°) = sin(50° ‒ x);

b) 8sin3x + 1 = 0;

c) (sinx + 3)(cotx ‒ 1) = 0;

d) tan(x ‒ 30°) ‒ cot50° = 0.

Lời giải:

a) cos(2x + 10°) = sin(50° ‒ x)

⇔ cos(2x + 10°) = cos(x + 40°)

⇔ 2x + 10° = x + 40°+ k360°, k ∈ ℤ hoặc 2x + 10° = ‒x ‒ 40°+ k360°, k ∈ ℤ

⇔ x = 30° + k360°, k ∈ ℤ hoặc x=13.50+k120,k.

Vậy phương trình có các nghiệm là x = 30° + k360°, k ∈ ℤvà x=1350+k120,k.

b) 8sin3x + 1 = 0

sin3x=18sinx=12

x=π6+k2π,k hoặc x=ππ6+k2π,k

x=π6+k2π,k hoặc x=7π6+k2π,k

Vậy phương trình có các nghiệm là x=π6+k2π,kx=7π6+k2π,k.

c) (sinx + 3)(cotx ‒ 1) = 0

⇔ sinx + 3 = 0 hoặc cotx ‒ 1 = 0

⇔ sinx = ‒3 hoặc cotx = 1

Phương trình sinx = ‒3 vô nghiệm.

Phương trình cotx = 1 có nghiệm là x=π4+kπ,k.

Vậy phương trình có các nghiệm là x=π4+kπ,k.

d) tan(x ‒ 30°) ‒ cot50° = 0

⇔ tan(x ‒ 30°) = cot50°

⇔ tan(x ‒ 30°) = tan40°

⇔ x ‒ 30° = 40° + k180°, k ∈ ℤ

⇔ x = 70° + k180°, k ∈ ℤ

Vậy phương trình có các nghiệm là x = 70° + k180°, k ∈ ℤ.

1 2,108 07/11/2023


Xem thêm các chương trình khác: