Sách bài tập Toán 11 Bài 2 (Chân trời sáng tạo): Cấp số cộng

Với giải sách bài tập Toán 11 Bài 2: Cấp số cộng sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 2.

1 718 01/11/2024


Giải SBT Toán 11 Bài 2: Cấp số cộng

Bài 1 trang 60 SBT Toán 11 Tập 1: Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.

a) un = 2n + 3;

b) un = ‒3n + 1;

c) un = n2 + 1;

d) un=2n.

Lời giải:

a) Ta có: u1 = 2.1 + 3 = 5; un = 2n + 3 và un+1 = 2(n + 1) +3 = 2n + 5

Do đó un+1 – un = 2n + 5 – (2n + 3) = 2.

Vậy un = 2n + 3 là cấp số cộng với số hạng đầu u1 = 5 và công sai d = 2.

b) Ta có: u1 = ‒3.1 + 1 = −2; un = ‒3n + 1 và un+1 = ‒3(n + 1) + 1 = ‒3n – 2.

Do đó un+1 – un = ‒3n – 2 – (‒3n + 1) = – 3.

Vậy un = ‒3n + 1 là cấp số cộng với số hạng đầu u1 = −2 và công sai d = ‒3.

c) Xét un = n2 + 1 có:

u1 = 12 + 1 = 2;

u2 = 22 + 1 = 5;

u3 = 32 + 1 = 10

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un = n2 + 1 không phải là cấp số cộng.

d) Xét un=2n có:

u1=21=2; u2=22=1; u3=23.

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un=2n không phải là cấp số cộng

Bài 2 trang 60 SBT Toán 11 Tập 1: Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.

a) un = 3n + 1;

b) un = 4 ‒ 5n;

c) un=2n+35;

d) un=n+1n;

e) un=n2n;

g) un = n2 + 1.

Lời giải:

a) Ta có: u1 = 3.1 + 1 = 4; un = 3n + 1; và un+1 = 3(n + 1) + 1 = 3n + 4.

Do đó un+1 – un = 3n + 4 – (3n + 1) = 3.

Vậy un = 3n + 1 là cấp số cộng với số hạng đầu u1 = 4 và công sai d = 3.

b) Ta có: u1 = 4 ‒ 5.1 = ‒1; un = 4 ‒ 5n và un+1 = 4 – 5(n + 1) = −1 – 5n.

Do đó un+1 – un = −1 – 5n – (4 ‒ 5n) = −5.

Vậy un = 4 ‒ 5n là cấp số cộng với số hạng đầu u1 = ‒1 và công sai d = ‒5.

c) Ta có u1=21+35=1; un=2n+35un+1=2n+1+35=2n+55

Do đó un+1un=2n+552n+35=25

Vậy un=2n+35 là cấp số cộng với số hạng đầu u1 = 1 và công sai d=25.

d) Xét un=n+1n có: u1=1+11=2; u2=2+12=32; u3=3+13=43;

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un=n+1n không phải là cấp số cộng.

e) Xét un=n2n có: u1=121=12; u2=222=12; u3=323=38;

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un=n2n không phải là cấp số cộng.

g) Xét un = n2 + 1 có u1 = 12 + 1 = 2; u2 = 22 + 1 = 5; u3 = 32 + 1 = 10.

Ta thấy: u2 ‒ u1 ≠ u3 ‒ u2

Vậy un = n2 + 1 không phải là cấp số cộng.

Bài 3 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có số hạng tổng quát: un = 7n ‒ 3.

a) Tìm số hạng đầu và công sai của cấp số cộng (un).

b) Tìm u2012.

c) Tính tổng của 100 số hạng đầu tiên của cấp số cộng (un).

d) Số 1 208 là số hạng thứ bao nhiêu của cấp số cộng (un)?

Lời giải:

a) Ta có: u1 = 7.1 ‒ 3 = 4; u2 = 7.2 ‒ 3 = 11.

Vậy cấp số cộng (un) có số hạng đầu u1 = 4 và công sai d = u2 ‒ u1 = 11 ‒ 4 = 7.

b) u2012 = 7.2012 ‒ 3 = 14 081.

c) u100 = 7.100 ‒ 3 = 697.

S100=100u1+u1002=1004+6972=35  050.

d) Ta có un = 1 208

Do đó 7n ‒ 3 = 1 208

Suy ra n = 173

Vậy số 1 208 là số hạng thứ 173

Bài 4 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un), biết u1 = 5 và d = 3.

a) Tìm số hạng tổng quát của cấp số cộng (un).

b) Tìm u99.

c) Số 1 502 là số hạng thứ bao nhiêu của cấp số cộng (un)?

d) Cho biết Sn = 34 275. Tìm n.

Lời giải:

a) Số hạng tổng quát của cấp số cộng (un) là:

un = u1 + (n ‒ 1)d = 5 + (n ‒ 1).3 = 3n + 2.

b) Ta có u99 = 3.99 + 2 = 299.

c) Ta có: un = 1 502 nên 3n + 2 = 1 502, suy ra n = 500.

Vậy số 1 502 là số hạng thứ 500 .

d) Sn=34  275=n2u1+n1d2=n25+n132

Suy ra n(10 + 3n – 3) = 2 . 34 275

Hay 3n2 + 7n – 68 550 = 0

Suy ra n=150n=4573

Mà n ≥ 2 nên n = 150.

Bài 5 trang 60 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có u18 ‒ u3 = 75. Tìm công sai d.

Lời giải:

Ta có:

u18 = u1 + 17d;

u3 = u1 + 2d.

Do đó:

u18 ‒ u3 = 75

⇔ u1 + 17d ‒ (u1 + 2d) = 75

⇔ 15d = 75

⇔ d = 5.

Vậy cấp số cộng (un) có công sai d = 5.

Bài 6 trang 61 SBT Toán 11 Tập 1: Cho cấp số cộng (un) có u4 + u12 = 90. Tìm S15.

Lời giải:

Gọi số hạng đầu của cấp số nhân là u1 và công sai là d.

Ta có:

u4 = u1 + 3d;

u12 = u1 + 11d.

Do đó: u4 + u12 = 90

⇔ u1 + 3d + u1 + 11d = 90

⇔ 2u1 + 14d = 90.

Khi đó S15=152u1+151d2=152u1+14d2=15902=675.

Bài 7 trang 61 SBT Toán 11 Tập 1: Xác định số hạng đầu và công sai của cấp số cộng (un), biết:

a) u1+u6=18u3+u7=22;

b) u9u4=15u3u8=184;

c) u6=8u22+u42=16.

Lời giải:

Gọi số hạng đầu của cấp số cộng là u1 và công sai là d.

a) u1+u6=18u3+u7=22u1+u1+5d=18u1+2d+u1+6d=222u1+5d=182u1+8d=22u1=173d=43

Vậy u1=173d=43.

b) u9u4=15u3u8=184u1+8du1+3d=15u1+2du1+7d=1845d=15u1+2du1+7d=184

d=3u1+2du1+7d=184

Với d = 3 ta có: (u1 + 2.3)(u1 + 7.3) = 184

u12+27u158=0

u1=2u1=29

Vậy d=3u1=2 hoặc d=3u1=29

c) u6=8u22+u42=16u1+5d=8u1+d2+u1+3d2=16   *

Từ u1 + 5d = 8 suy ra u1 = 8 ‒ 5d, thay vào biểu thức (*) ta có:

(8 ‒ 5d + d)2 + (8 ‒ 5d + 3d)2 = 16

⇔ (8 ‒ 4d)2 + (8 ‒ 2d)2 = 16

⇔ (64 – 64d + 16d2) + (64 – 32d + 4d2) = 16

⇔ 20d2 – 96d + 112 = 0

d=2d=145

Với d = 2 thì u1 = 8 ‒ 5.2 = ‒2

Với d=145 thì u1=85145=6

Vậy u1=2d=2 hoặc u1=6d=145.

Bài 8 trang 61 SBT Toán 11 Tập 1: Bác Tư vào làm cho một công ty với hợp đồng về tiền lương mỗi năm như sau:

⦁ Năm thứ nhất: 240 triệu;

⦁ Từ năm thứ hai trở đi: Mỗi năm tăng thêm 12 triệu.

Tính số tiền lương một năm của bác Tư vào năm thứ 11.

Lời giải:

Gọi un là số tiền lương của bác Tư nhận được vào năm thứ n.

Khi đó, dãy số (un) tạo thành cấp số cộng có u1 = 240 và d = 12.

Ta có u11 = u1 + 10d = 240 + 10.12 = 360.

Vậy vào năm thứ 11, số tiền lương một năm của bác Tư là 360 triệu đồng.

Bài 9 trang 61 SBT Toán 11 Tập 1: Một rạp hát có 20 hàng ghế. Hàng thứ nhất có 20 ghế, số ghế ở các hàng sau đều hơn số ghế hàng ngay trước đó một ghế. Cho biết rạp hát đã bán hết vé với giá mỗi vé là 60 nghìn đồng. Tính tổng số tiền vé thu được của rạp hát.

Lời giải:

Gọi un là số ghế ở hàng thứ n.

Khi đó, dãy số (un) tạo thành cấp số cộng với u1 = 20 và d = 1.

Tổng số ghế có trong rạp hát là: S20=20220+20112=590 (ghế).

Tổng số tiền vé thu được là: 590 . 60 000 = 35 400 000 (đồng).\

Lý thuyết Cấp số cộng

1. Cấp số cộng

Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d, nghĩa là:

un=un1+d,n2

Số d được gọi là công sai của cấp số cộng.

* Nhận xét: Nếu (un) là cấp số cộng thì kể từ số hạng thứ 2, mỗi số hạng (trừ số hạng cuối đối với cấp số cộng hữu hạn) đều là trung bình cộng của 2 sô hạng đứng kề nó trong dãy, tức là:

uk=uk1+uk+12(k2)

2. Số hạng tổng quát

Nếu cấp số cộng (un) có số hạng đầu là u1 và công sai d thì số hạng tổng quát uncủa nó được xác định theo công thứcun=u1+(n1)d,n2.

3. Tổng n số hạng đầu của một cấp số cộng

Cho cấp số cộng (un)với công sai d. Đặt Sn=u1+u2+u3+...+un. Khi đó

Sn=n(u1+un)2=n2[2u1+(n1)d]

Lý thuyết Cấp số cộng – Toán 11 Chân trời sáng tạo (ảnh 1)

Xem thêm lời giải SBT Toán lớp 11 bộ sách Chân trời sáng tạo hay, chi tiết khác:

Bài 5: Phương trình lượng giác cơ bản

Bài tập cuối chương 1 trang 32

Bài 1: Dãy số

Bài 3: Cấp số nhân

Bài tập cuối chương 2 trang 64

1 718 01/11/2024


Xem thêm các chương trình khác: