Sách bài tập Toán 11 Bài 4 (Chân trời sáng tạo): Phương trình, bất phương trình mũ và lôgarit
Với giải sách bài tập Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 4.
Giải SBT Toán 11 Bài 4: Phương trình, bất phương trình mũ và lôgarit
Bài 1 trang 22 SBT Toán 11 Tập 2: Giải các phương trình sau:
c) 3x = 18;
d) ;
e) 53x = 25x – 2;
g) .
Lời giải:
a) 32x + 1 = 3– 3
⇔ 2x + 1= –3 (do 3 > 1)
⇔ x = – 2.
Vậy phương trình có nghiệm là x = 2.
b) 52x =10
⇔ 2x = log5 10
⇔ x = .
Vậy phương trình có nghiệm là x = .
c) 3x = 18 ⇔ x = log3 18
Vậy phương trình có nghiệm là x = log3 18.
d)
⇔
⇔ 1 - x = (do 5 > 1)
⇔ x =
Vậy phương trình có nghiệm là x = .
e) 53x = 25x–2
⇔ 53x = 52x–4
⇔ 3x = 2x – 4 (do 5 > 1)
⇔ x = – 4.
Vậy phương trình có nghiệm là x = – 4.
g)
⇔
⇔
⇔ –3x – 3 = –5x + 5 (do 2 > 1)
⇔ 2x = 8 ⇔ x = 4.
Vậy phương trình có nghiệm là x = 4.
Bài 2 trang 22 SBT Toán 11 Tập 2: Giải các phương trình sau:
c) log2 (3x + 1) = log2 (2x - 4);
d) log5 (x - 1) + log5 (x - 3) = log5 (2x + 10);
e) log x + log (x – 3) = 1;
g) log2 (log81 x) = -2.
Lời giải:
a) Điều kiện: 2x – 1 > 0
Ta có: log3 (2x - 1) = 3
⇔ 2x - 1 = 33 = 27
⇔ x = 14 (nhận)
Vậy tập nghiệm của phương trình là: S = {14}.
b) Điều kiện: x > 0
Ta có: log49 x = 0,25
⇔
⇔
⇔
⇔ x = (nhận)
Vậy tập nghiệm của phương trình là: S = {}.
c) Điều kiện:
Ta có: log2 (3x + 1) = log2 (2x - 4)
⇔ 3x + 1 = 2x – 4 (do 2 >1)
⇔ x = – 5 (loại).
Vậy phương trình đã cho vô nghiệm.
d) Điều kiện:
Ta có: log5 (x - 1) + log5 (x - 3) = log5 (2x + 10)
⇔
⇔
⇔ x2 – 4x + 3 = 2x + 10 (do 2 >1)
⇔ x2 – 6x – 7 = 0.
⇔ x = 7 (nhận) hoặc x = –1 (loại)
Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = {7}.
e) Điều kiện:
Ta có: log x + log (x – 3) = 1
⇔ log [x(x – 3)] = 1
⇔ log (x2 – 3x)=1
⇔ x2 – 3x – 10 = 0 (do 10 >1)
⇔ x = 5 (nhận) hoặc x = –2 (loại)
Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = {5}.
g) Điều kiện:
Ta có: log2 (log81 x) = -2
⇔ log81 x = 2-2 ⇔ x = = 3 (nhận)
Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = {3}.
Bài 3 trang 22 SBT Toán 11 Tập 2: Giải các bất phương trình sau:
c) ;
d) 42x < 8x –1;
e) ;
g) 0,25x – 2 > 0,5x + 1.
Lời giải:
a) Ta có:
⇔
⇔
⇔
⇔ .
Vậy tập nghiệm của bất phương trình là: S = .
b) Ta có:
⇔
⇔ (do 3 > 1)
⇔ x ≤ 5
Vậy tập nghiệm của bất phương trình là: S = (-∞; 5].
c)
⇔ 2-x < 8
⇔ 2-x < 23
⇔ x > -3
Vậy tập nghiệm của bất phương trình là: S = (-3; +∞).
d) 42x < 8x – 1
⇔ 24x < 23x – 3
⇔ 4x < 3x – 3 (do 2 > 1)
⇔ x < – 3.
Vậy tập nghiệm của bất phương trình là: S = (-∞; -3).
e)
⇔ 5x-2 ≤ 5-2x
⇔ x - 2 ≤ -2x (do 5 >1)
⇔ 3x ≤ 2 ⇔ x ≤
Vậy tập nghiệm của bất phương trình là: S = .
g) 0,25x – 2 > 0,5x + 1
⇔ 0,52(x - 2) > 0,5x + 1
⇔ 2(x –2) < x +1 (do 0 < 0,5 < 1)
⇔ x < 5.
Vậy tập nghiệm của bất phương trình là: S = (-∞; 5).
Bài 4 trang 22 SBT Toán 11 Tập 2: Giải các bất phương trình sau:
c) ;
d) ;
e) ;
g) .
Lời giải:
a) Điều kiện: x > –4
Ta có: log3 (x + 4) < 2 ⇔ x + 4 < 9 ⇔ x < 5
Kết hợp điều kiện, vậy tập nghiệm của bất phương trình là: S = (–4; 5).
b) Điều kiện: x > 0
Ta có:
Kết hợp điều kiện, vậy tập nghiệm của bất phương trình là: S = .
c) Điều kiện: x > 1
Ta có: log0,25 (x - 1) ≤ -1
⇔ x - 1 ≥ (0,25)-1 (do 0 < 0, 5 < 1)
⇔ x - 1 ≥ 4
⇔ x ≥ 5
Kết hợp điều kiện, vậy tập nghiệm của bất phương trình là: S = .
d) Điều kiện:
Ta có:
⇔ x2 - 24x ≥ 25
⇔ x2 - 24x - 25 ≥ 0 (Do 5 > 1)
⇔
Kết hợp điều kiện, vậy tập nghiệm của bất phương trình là: S = .
e) Điều kiện:
Ta có:
⇔
⇔ x2 + 2x + 1 ≤ 3x + 7 (do cơ số )
⇔ x2 - x - 6 ≤ 0 ⇔ -2 ≤ x ≤ 3
Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = (−1; 3].
g) Điều kiện:
Ta có:
⇔
⇔
⇔ (do cơ số 2 > 1)
⇔ (x + 1)2 ≤ 3x + 21
⇔ x2 + 2x + 1 ≤ 3x + 21
⇔ x2 - x - 20 ≤ 0
⇔ -4 ≤ x ≤ 5
Kết hợp điều kiện, vậy tập nghiệm của phương trình là: S = (–1; 5].
Bài 5 trang 22 SBT Toán 11 Tập 2: Giải các phương trình sau:
Lời giải:
a) 4x – 5.2x + 4 = 0;
Đặt t = 2x (t > 0).
Khi đó: t2 – 5t + 4 = 0 ⇔
=> .
Kết hợp với điều kiện, vậy phương trình có nghiệm x = 0 hoặc x = 2.
b)
⇔
⇔
Đặt t = (t > 0).
Khi đó, ta có: t2 - 6t + 27 ⇔ t = 9 (nhận) hoặc t = –3 (loại)
Do đó = 9 ⇔ 3–x = 32 ⇔ x = –2.
Vậy nghiệm của phương trình là x = –2.
Lời giải:
Từ giả thiết, nhận được 1 < log3 x < 2 hay 3 < x < 9.
Do đó, ta có các số nguyên cần tìm là 4; 5; 6; 7; 8.
Bài 7 trang 23 SBT Toán 11 Tập 2: Tìm tập xác định của các hàm số:
b) y = f(x) = .
Lời giải:
a) y = f(x) =
Điều kiện xác định:
Tập xác định: D = (1; 2].
b) y = f(x) =
Điều kiện xác định:
=>
Tập xác định: D = (2; 3].
Lời giải:
Ta có f(b) - f(a) = log2 b - log2 a = = 5
⇔ = 25 = 32.
Vậy = 32
Lời giải:
Ta có: 125a . 25b = 3
⇔ 53a . 52b = 3
⇔ 53a+2b = 3
⇔ 3a + 2b = log5 3.
Lời giải:
Lượng Uranium - 235 còn lại bằng 90% so với ban đầu là 90 g.
Khi đó M = 90 g, ta có phương trình:
= 0,9
⇔ ⇔ t = (năm).
Vậy sau khoảng 106 979 777 năm thì lượng Uranium-235 còn lại bằng 90% so với ban đầu.
Lời giải:
=>
Để số lượng vi khuẩn trong mỗi milit nước trong thùng ít hơn hoặc bằng 1 000, ta có:
⇔
⇔ = (giờ).
Vậy sau khoảng 10,8 giờ thì số lượng vi khuẩn trong mỗi mililit nước trong thùng ít hơn hoặc bằng 1 000.
Lời giải:
Ta có: pHA = – log xA; pHB = – log xB
Khi đó pHA – pHB = – logxA + logxB =
Do đó (lần)
Vậy dung dịch B có nồng độ ion H+ gấp 5 lần nồng độ ion H+ của dung dịch A.
Lý thuyết Phương trình, bất phương trình mũ và lôgarit
1. Phương trình mũ cơ bản
Phương trình mũ cơ bản có dạng (với ).
- Nếu b > 0 thì phương trình có nghiệm duy nhất .
- Nếu b 0 thì phương trình vô nghiệm.
Chú ý: Với
a) .
b) Tổng quát hơn,
Minh họa bằng đồ thị:
2. Phương trình lôgarit cơ bản
Phương trình lôgarit cơ bản có dạng .
Phương trình luôn có nghiệm duy nhất .
Chú ý: Với
a) .
b) .
Có thể thay bằng (chọn bất phương trình đơn giản hơn)
Minh họa bằng đồ thị:
3. Bất phương trình mũ cơ bản
Bất phương trình mũ cơ bản có dạng (hoặc ) với .
Bảng tổng kết về nghiệm của các bất phương trình trên:
Chú ý:
Nếu a > 1 thì .
Nếu 0 < a < 1 thì .
4. Bất phương trình lôgarit cơ bản
Bất phương trình lôgarit cơ bản có dạng (hoặc ) với .
Bảng tổng kết về nghiệm của các bất phương trình trên:
Chú ý:
Nếu a > 1 thì .
Nếu 0 < a < 1 thì .
Sơ đồ tư duy Phương trình, bất phương trình mũ và lôgarit
Xem thêm lời giải SBT Toán lớp 11 bộ sách Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 5 trang 160
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 11 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 11 - Chân trời sáng tạo
- Giải SBT Ngữ văn 11 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 11 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Chân trời sáng tạo
- Soạn văn 11 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 11 – Friends Global
- Giải sbt Tiếng Anh 11 - Friends Global
- Trọn bộ Từ vựng Tiếng Anh 11 Friends Global đầy đủ nhất
- Bài tập Tiếng Anh 11 Friends Global theo Unit có đáp án
- Giải sgk Vật lí 11 – Chân trời sáng tạo
- Lý thuyết Vật lí 11 – Chân trời sáng tạo
- Giải sbt Vật lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Vật lí 11 – Chân trời sáng tạo
- Giải sgk Hóa học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Hóa học 11 – Chân trời sáng tạo
- Lý thuyết Hóa 11 - Chân trời sáng tạo
- Giải sbt Hóa học 11 – Chân trời sáng tạo
- Giải sgk Sinh học 11 – Chân trời sáng tạo
- Lý thuyết Sinh học 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Sinh học 11 – Chân trời sáng tạo
- Giải sbt Sinh học 11 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Chân trời sáng tạo
- Lý thuyết Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sbt Kinh tế pháp luật 11 – Chân trời sáng tạo
- Giải sgk Lịch sử 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Lịch sử 11 – Chân trời sáng tạo
- Lý thuyết Lịch sử 11 - Chân trời sáng tạo
- Giải sbt Lịch sử 11 – Chân trời sáng tạo
- Giải sgk Địa lí 11 – Chân trời sáng tạo
- Giải Chuyên đề học tập Địa lí 11 – Chân trời sáng tạo
- Lý thuyết Địa lí 11 - Chân trời sáng tạo
- Giải sbt Địa lí 11 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 11 – Chân trời sáng tạo