Giải Toán 6 Bài 12: Ước chung. Ước chung lớn nhất - Chân trời sáng tạo

Lời giải bài tập Toán lớp 6 Bài 12: Ước chung. Ước chung lớn nhất sách Chân trời sáng tạo với cuộc sống hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 6.

1 2,452 22/09/2024
Tải về


Giải Toán 6 Bài 12: Ước chung. Ước chung lớn nhất

A. Các câu hỏi trong bài

Giải Toán 6 trang 36 Tập 1

Toán lớp 6 trang 36 Hoạt động khởi động

Làm thế nào để tìm được số lớn nhất vừa là ước của 504, vừa là ước của 588?

Lời giải:

+ Trước khi học kiến thức Bài 12 này, ta sẽ giải quyết câu hỏi này bằng cách đi tìm tất cả các ước của 504 và 588, sau đó chọn ra các số giống nhau trong các ước của hai số trên, số lớn nhất trong các số đó là số cần tìm.

+ Sau bài này ta sẽ biết được cách làm đơn giản hơn như sau:

Cách làm như sau:

- Phân tích các số ra thừa số nguyên tố:

504=23.32.7

588=22.3.72

- Chọn các thừa số chung và số mũ nhỏ nhất của nó sau đó nhân lại ta được:

22.3.7=84.

- Vậy số lớn nhất vừa là ước của 504 vừa là ước của 588 là 84.

Ta gọi 84 là ước chung lớn nhất của hai số 504 và 588

Toán lớp 6 trang 36 Thực hành 1

Các khẳng định sau đúng hay sai? Vì sao?

a) 6 ƯC(24, 30);

b) 6 ƯC(28, 42);

c) 6 ƯC(18, 24, 42);

Lời giải:

a) Ta có: Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}

Các số 1; 2; 3; 6 vừa là ước của 24, vừa là ước của 30. Ta nói 1; 2; 3; 6 là các ước chung của 24 và 30, ta viết ƯC(24, 30) = {1; 2; 3; 6}

6 ƯC(24, 30).

Vậy 6 ƯC(24, 30) là khẳng định đúng.

b) Ta có: Ư(28) = {1; 2; 4; 7; 14; 28}

Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}

Các số 1; 2; 7; 14 vừa là ước của 28, vừa là ước của 42. Ta nói 1; 2; 7; 14 là các ước chung của 28 và 42, ta viết ƯC(28, 42) = {1; 2; 7; 14}

6 ƯC(28, 42).

Vậy 6 ƯC(28, 42) là khẳng định sai.

Ta có: Ư(18) = {1; 2; 3; 6; 9; 18}

Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}

Các số 1; 2; 3; 6 vừa là ước của 18, vừa là ước của 24, vừa là ước của 42. Ta nói 1; 2; 3; 6 là các ước chung của 18, 24 và 42, ta viết ƯC(18, 24, 42) = {1; 2; 3; 6}

6 ƯC(18, 24, 42).

Vậy 6 ƯC(18, 24, 42) là khẳng định đúng.

Toán lớp 6 trang 36 Thực hành 2

Tìm ước chung của:

a) 36 và 45;

b) 18, 36 và 45.

Lời giải:

a) Ta có: Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(45) = {1; 3; 5; 9; 15; 45}

Do đó: ƯC(36, 45) = {1; 3; 9}.

b) Ta có: Ư(18) = {1; 2; 3; 6; 9; 18}

Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(45) = {1; 3; 5; 9; 15; 45}

Do đó: ƯC(18, 36, 45) = {1; 3; 9}.

Giải Toán 6 trang 37 Tập 1

Toán lớp 6 trang 37 Hoạt động khám phá 2

Một chi đội gồm 18 học sinh nam và 30 học sinh nữ muốn lập thành các đội tham gia hội diễn văn nghệ sao cho tiết mục của các đội khác nhau và mỗi bạn chỉ tham gia một đội, số nam trong các đội bằng nhau và số nữ cũng vậy. Có thể biểu diễn được nhiều nhất bao nhiêu tiết mục văn nghệ?

Lời giải:

Số nam trong các đội bằng nhau và số nữ cũng bằng nhau, nên số đội nam (cũng là số đội nữ) là ước của 18 và 30, tức số đội là ước chung của 18 và 30.

Ư(18) = {1; 2; 3; 6; 9; 18}

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}

ƯC(18; 30) = {1; 2; 3; 6}

Số đội được chia phải là vừa là ước của 18 vừa là ước của 30 nên số đội phải thuộc vào tập ƯC(18;30)

Hơn nữa số đội được chia phải nhiều nhất nên có thể chia chi đội đó thành 6 đội.

* Vậy: Có thể biểu diễn được nhiều nhất 6 tiết mục văn nghệ.

Toán lớp 6 trang 37 Thực hành 3

Viết ƯC(24, 30) và từ đó chỉ ra ƯCLN(24, 30).

Lời giải:

Ta có:

Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}

ƯC(24, 30) = {1; 2; 3; 6}

Trong các ước chung của 24 và 30, ta thấy 6 là ước lớn nhất

Do đó: ƯCLN(24, 30) = 6.

Vậy ƯCLN(24, 30) = 6.

Toán lớp 6 trang 37 Thực hành 4

Tìm ƯCLN(24, 60); ƯCLN(14, 33); ƯCLN(90,135, 270).

Lời giải:

+) Phân tích các số 24, 60 ra thừa số nguyên tố:

24=23.3;60=22.3.5

Các thừa số nguyên tố chung là 2 và 3 với số mũ nhỏ nhất lần lượt là 2 và 1.

Vậy ƯCLN(24, 60) = 22.3=12

+) Phân tích các số 14 và 33 ra thừa số nguyên tố: 14 = 2.7, 33 = 33

Vậy ƯCLN(14, 33) = 1

+) Phân tích: 90=2.32.5;  135=33.5;  270=2.3.35

Các thừa số nguyên tố chung là 3 và 5 với số mũ nhỏ nhất lần lượt là 2 và 1

Vậy ƯCLN(90,135, 270) = 32.5=45.

Giải Toán 6 trang 38 Tập 1

Toán lớp 6 trang 38 Thực hành 5

Rút gọn các phân số sau:

24108;8032

Lời giải:

Để rút gọn một phân số, ta có thể chia cả tử và mẫu của phân số đó cho ước chung lớn nhất của chúng để được phân số tối giản.

+) Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Ư(108) = {1; 2; 3; 4; 6; 9; 12; 18; 27; 36; 54; 108}

ƯCLN(24; 108) = 12

24108=24:12108:12=29

+) Ư(80) = {1; 2; 4; 5; 8; 10; 16; 20; 40; 80}

Ư(32) = {1; 2; 4; 8; 16; 32}

ƯCLN(80; 32) = 16

8032=80:1632:16=52

B. Bài tập

Toán lớp 6 trang 38 Bài 1

Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai? Với khẳng định sai hãy sửa lại cho đúng.

a) ƯC(12, 24) = {1; 2; 3; 4; 6; 8; 12};

b) ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.

Lời giải:

a) Khẳng định a là sai vì:

Ư(12) = {1; 2; 3; 4; 6; 12}

Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}

Suy ra ƯC(12, 24) = {1; 2; 3; 4; 6; 12}

Do đó 8 không phải là phần tử của tập ƯC(12, 24).

b) Khẳng định b là đúng vì:

Ta có:

Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}

Ư(12) = {1; 2; 3; 4; 6; 12}

Ư(48) = {1; 2; 3; 4; 6; 8; 12; 16; 24; 48}

Suy ra ƯC(36, 12, 48) = {1; 2; 3; 4; 6; 12}.

Giải Toán 6 trang 39 Tập 1

Toán lớp 6 trang 39 Bài 2

Tìm:

a) ƯCLN(1, 16);

b) ƯCLN(8, 20);

c) ƯCLN(84, 156);

d) ƯCLN(16, 40, 176).

Lời giải:

a) ƯCLN(1, 16) = 1.

b) Phân tích 8 và 30 ra thừa số nguyên tố:

8=23;   20=22.5

Các thừa số nguyên tố chung là 2.

Lập tích các thừa số chung vừa chọn được, mỗi thừa số lấy với số mũ nhỏ nhất của nó là: 22

Vậy ƯCLN(8, 20) = 22=4

c) Phân tích 84 và 156 ra thừa số nguyên tố:

84=22.3.7;   156=22.3.13

Các thừa số nguyên tố chung là 2 và 3.

Lập tích các thừa số chung vừa chọn được, mỗi thừa số lấy với số mũ nhỏ nhất của nó là: 22.3

Vậy ƯCLN(84, 156) = 22.3=12

d) Phân tích 16, 40 và 176 ra thừa số nguyên tố:

16=24;   40=23.5;   176=24.11

Các thừa số nguyên tố chung là 2.

Lập tích các thừa số chung vừa chọn được, mỗi thừa số lấy với số mũ nhỏ nhất của nó là: 23

Vậy ƯCLN(16, 40, 176) = 23=8

Toán lớp 6 trang 39 Bài 3

a) Ta có ƯCLN(18, 30) = 6. Hãy viết tập hợp A các ước của 6. Nêu nhận xét về tập hợp ƯC(18, 30) và tập hợp A.

b) Cho hai số a và b. Để tìm tập hợp ƯC(a, b), ta có thể tìm tập hợp các ước của ƯCLN(a, b). Hãy tìm ƯCLN rồi tìm tập hợp các ước chung của:

i. 24 và 30;

ii. 42 và 98;

iii. 180 và 234.

Lời giải:

a) Các ước của 6 là 1, 2, 3, 6.

Do đó ta có tập hợp A = Ư(6) = {1; 2; 3; 6}.

Ư(18) = {1; 2; 3; 6; 9; 18}.

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.

ƯC(18, 30) = {1; 2; 3; 6}.

Nhận xét: Ta thấy tập hợp ƯC(18, 30) = {1; 2; 3; 6} nên tập hợp ƯC (18, 30) giống với tập hợp A.

Tổng quát: Cho hai số tự nhiên a và b. Để tìm tập ƯC(a,b) ta sẽ tìm ƯCLN(a, b) = m. Khi đó ƯC(a, b) = Ư(m).

b)

i. Phân tích 24 và 30 ra thừa số nguyên tố:

24=23.3;   30=2.3.5

Suy ra ƯCLN(24, 30) = 2.3 = 6

Vậy: ƯC(24, 30) = Ư(6) = {1; 2; 3; 6}.

ii. Ta phân tích các số 42 và 98 ra thừa số nguyên tố

42=2.3.7;  98=2.72

Suy ra ƯCLN(42, 98) = 2.7 = 14.

Vậy: ƯC (42, 98) = Ư(14) = {1; 2; 7; 14}.

iii. Ta phân tích các số 180 và 234 ra thừa số nguyên tố

180=22.5.32;   234=2.32.13

Suy ra ƯCLN(180, 234) = 2.32=18

Vậy: ƯC(180, 234) = Ư(18) = {1; 2; 3; 6; 9; 18}.

Toán lớp 6 trang 39 Bài 4

Rút gọn các phân số sau:

2842;  60135;  288180.

Lời giải:

Để rút gọn một phân số, ta chia cả tử và mẫu của phân số cho ƯCLN của chúng để được phân số tối giản.

+) Ta có: 28=22.7;  42=2.3.7

Suy ra ƯCLN(28, 42) = 14

2842=28:1442:14=23

+) Ta có: 60=22.3.5;  135=33.5

Suy ra ƯCLN(60, 135) = 15

60135=60:15135:15=49

+) Ta có: 288=25.32,  180=22.32.5

ƯCLN(288, 180) = 36

288180=288:36180:36=85

Toán lớp 6 trang 39 Bài 5

Chị Lan có ba đoạn dây ruy băng màu khác nhau với độ dài lần lượt là 140 cm, 168 cm và 210 cm. Chị muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài để làm nơ trang trí mà không bị thừa ruy băng. Tính độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra (độ dài mỗi đoạn dây ngắn là một số tự nhiên với đơn vị là xăng-ti-mét). Khi đó, chị Lan có được bao nhiêu đoạn dây ruy băng ngắn?

Lời giải:

Bởi vì chị Lan muốn cắt cả ba đoạn dây đó thành những đoạn ngắn hơn có cùng chiều dài.

Nên độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra chính là ước chung lớn nhất của 140, 168 và 210.

Ta tìm ước chung lớn nhất của 140, 168, 210:

Ta có:

140=22.5.7

168=23.3.7

210 = 2.3.5.7

Suy ra ƯCLN(140, 168, 210) = 2 . 7 = 14

Độ dài lớn nhất có thể của mỗi đoạn dây ngắn được cắt ra là: 14 cm.

- Mỗi đoạn dây khác nhau có thể cắt được số đoạn dây ngắn là:

Đoạn dây dài 140 cm cắt được: 140 : 14 = 10 (đoạn).

Đoạn dây dài 168 cm cắt được: 168 : 14 = 12 (đoạn).

Đoạn dây dài 210 cm cắt được: 210 : 14 = 15 (đoạn).

- Số đoạn dây ruy băng ngắn chị Lan có được là:

10 + 12 + 15 = 37 (đoạn dây).

Kết luận: Chị Lan có được tổng cộng 37 đoạn dây ruy băng ngắn sau khi cắt với độ dài mỗi đoạn là 14 cm.

Lý thuyết Toán 6 Bài 11: Ước chung, Ước chung lớn nhất - Chân trời sáng tạo

1. Ước chung

- Một số được gọi là ước chung của hai hay nhiều số nếu nó là ước của tất cả các số đó.

- Tập hợp các ước chung của hai số a và b kí hiệu là ƯC(a, b).

x ƯC(a, b) nếu a ⋮ x và b ⋮ x.

- Tương tự, tập hợp các ước chung của a, b, c kí hiệu là ƯC(a, b, c).

x ƯC(a, b, c) nếu a ⋮ x, b ⋮ x và c ⋮ x.

Ví dụ:

Ta có: Ư(9) = {1; 3; 9}; Ư(21) = {1; 3; 7; 21}.

Các số 1 và 3 vừa là ước của 9 vừa là ước của 21. Ta nói 1 và 3 là các ước chung của 9 và 21 và viết ƯC(9, 21) = {1; 3}.

Cách tìm ước chung của hai số a và b:

- Viết tập hợp các ước của a và của b: Ư(a), Ư(b).

- Tìm những phần tử chung của Ư(a) và Ư(b).

Ví dụ:

Ư(8) = {1; 2; 4; 8}

Ư(12) = {1; 2; 3; 4; 6; 12}

Do đó ƯC(8; 12) = {1; 2; 4}.

2. Ước chung lớn nhất

Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.

Kí hiệu ước chung lớn nhất của a và b là ƯCLN(a, b).

Tương tự, ước chung lớn nhất của a, b và c là ƯCLN(a, b, c).

Nhận xét: Tất cả các ước chung của hai hay nhiều số đều là ước của ƯCLN của các số đó.

Ví dụ:

ƯC(16, 24) = {1; 2; 4; 8} nên ƯCLN(16, 24) = 8, vì 8 là số lớn nhất trong số các ước chung của 16 và 24. Các ước chung của 36 và 45 là 1; 2; 4; 8 đều là ước của 8.

Nhận xét: Với mọi số tự nhiên a và b, ta có:

ƯCLN(a, 1) = 1; ƯCLN(a, b, 1) = 1.

Ví dụ: ƯCLN(9, 1) = 1; ƯCLN(5, 18, 1) = 1.

3. Tìm ước chung lớn nhất bằng cách phân tích các số ra thừa số nguyên tố

Quy tắc:

Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau:

Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

Bước 2: Chọn ra các thừa số nguyên tố chung.

Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.

Ví dụ: Tìm ƯCLN (36; 60).

Hướng dẫn giải

Bước 1: Phân tích các số ra thừa số nguyên tố.

36 = 22 . 32

60 = 22 . 3 . 5

Bước 2: Thừa số nguyên tố chung là 2 và 3.

Bước 3: Số mũ nhỏ nhất của thừa số 2 là 2 và của 3 là 1.

ƯCLN(18; 30) = 22 . 3 = 12.

Chú ý: Hai số có ƯCLN bằng 1 gọi là hai số nguyên tố cùng nhau.

Ví dụ: ƯCLN(15; 23) = 1 nên 15 và 23 được gọi là hai số nguyên tố cùng nhau.

4. Ứng dụng trong rút gọn về số tối giản

Rút gọn phân số: Chia cả tử và mẫu cho ước chung khác 1 (nếu có) của chúng.

Phân số tối giản: ab là phân số tối giản nếu ƯCLN(a, b) = 1.

Đưa một phân số chưa tối giản về phân số tối giản:

Chia cả tử và mẫu cho ƯCLN(a, b).

Ví dụ: Phân số

Hướng dẫn giải

Vì ƯCLN(9, 24) = 3 ≠ 1 nên 9/24 chưa phải là phân số tối giản.

Ta có: Ước chung, Ước chung lớn nhất  | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Khi đó, ta được 3/8 là phân số tối giản.

Bài tập tự luyện

Bài 1: Tìm các ước chung lớn hơn 20 của 144 và 192.

Xem thêm lời giải bài tập Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:

1 2,452 22/09/2024
Tải về


Xem thêm các chương trình khác: