Giải Toán 6 Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố - Chân trời sáng tạo
Lời giải bài tập Toán lớp 6 Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố sách Chân trời sáng tạo với cuộc sống hay, chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 6.
Giải Toán 6 Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
A. Các câu hỏi trong bài
Toán lớp 6 trang 31 Hoạt động khởi động
Những số tự nhiên nào lớn hơn 1 và có ít ước nhất?
Lời giải
Những số tự nhiên lớn hơn 1 và có ít ước nhất là 2; 3; 5; 7; 11; 13; …
Sau bài học này ta sẽ biết các số trên được gọi là số nguyên tố.
Toán lớp 6 trang 31 Hoạt động khám phá 1
a) Tìm tất cả các ước của các số từ 1 đến 10.
b) Sắp xếp các số từ 1 đến 10 thành ba nhóm:
- Nhóm 1 bao gồm các số chỉ có một ước.
- Nhóm 2 bao gồm các số chỉ có hai ước khác nhau.
- Nhóm 3 bao gồm các số có nhiều hơn hai ước khác nhau.
Lời giải:
a) Ư(1) = {1};
Ư(2) = {1; 2};
Ư(3) = {1; 3};
Ư(4) = {1; 2; 4};
Ư(5) = {1; 5};
Ư(6) = {1; 2; 3; 6};
Ư(7) = {1; 7};
Ư(8) = {1; 2; 4; 8};
Ư(9) = {1; 3; 9};
Ư(10) = {1; 2; 5; 10}.
b)
- Nhóm 1 chỉ có số 1.
- Nhóm 2 bao gồm 2; 3; 5; 7.
- Nhóm 3 bao gồm 4; 6; 8; 9; 10.
Toán lớp 6 trang 31 Thực hành 1
a) Trong các số 11; 12; 25, số nào là số nguyên tố, số nào là hợp số? Vì sao?
Lời giải:
a) Ta có: Ư(11) = {1; 11}; Ư(12) = {1; 2; 3; 4; 6; 12} và Ư(25) = {1; 5; 25}.
Số nguyên tố là 11 vì 11 lớn hơn 1 và chỉ có hai ước là 1 và chính nó.
Hợp số là: 12; 25 vì 12 có nhiều hơn 2 ước, còn 25 có 3 ước.
b) Không. Vì còn có số 0 và số 1 không phải là số nguyên tố và cũng không là hợp số.
Toán lớp 6 trang 33 Thực hành 2
Phân tích số 60 ra thừa số nguyên tố theo cột dọc.
Lời giải:
Phân tích số 60 ra thừa số nguyên tố theo cột dọc, ta được:
Vậy
Toán lớp 6 trang 33 Thực hành 3
Lời giải
a)
18 = 2.32
b)
42 = 2.3.7
c)
280 = 23.5.7
B. Bài tập
Mỗi số sau là số nguyên tố hay hợp số? Giải thích.
Lời giải:
a) Vì 213 có ước là 3 khác 1 và chính nó nên 213 có nhiều hơn 2 ước. Do đó 213 là hợp số.
b) Vì 245 có ước là 5 khác 1 và chính nó nên 245 có nhiều hơn 2 ước. Do đó 245 là hợp số.
c) Vì 3 737 có ước là 37 khác 1 và chính nó nên 3737 có nhiều hơn 2 ước. Do đó 3737 là hợp số.
d) Vì 67 chỉ có đúng hai ước là 1 và chính nó nên 67 là số nguyên tố.
Lời giải:
Ta nhận thấy 37 chỉ có hai ước là 1 và chính nó nên 37 là số nguyên tố mà cần ít nhất hai hàng nên không thể xếp các học sinh trong lớp thành các hàng có cùng số bạn.
a) Hai số tự nhiên liên tiếp đều là số nguyên tố.
b) Ba số lẻ liên tiếp đều là số nguyên tố.
Lời giải:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố là 2 và 3.
b) Ba số lẻ liên tiếp đều là số nguyên tố là 3; 5; 7.
Mỗi khẳng định sau đúng hay sai?
a) Tích của hai số nguyên tố luôn là một số lẻ.
b) Tích của hai số nguyên tố có thể là một số chẵn.
c) Tích của hai số nguyên tố có thể là một số nguyên tố.
Lời giải:
a) Ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố luôn là một số lẻ” là SAI.
b) Như ý a ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố có thể là một số chẵn” là ĐÚNG.
c) Tích của hai số nguyên tố a, b sẽ có các ước là 1, a, b và ab. Do đó tích của chúng có nhiều hơn hai ước nên không là một số nguyên tố.
Vì vậy khẳng định “Tích của hai số nguyên tố có thể là một số nguyên tố” là SAI.
Phân tích mỗi số sau ra thừa số nguyên tố rồi cho biết mỗi số chia hết cho các số nguyên tố nào?
Lời giải:
a)
80 có thể chia hết cho các số nguyên tố là 2 và 5.
b)
120 có thể chia hết cho các số nguyên tố là 2, 3, 5.
c)
225 có thể chia hết cho các số nguyên tố là 3 và 5.
d)
400 có thể chia hết cho các số nguyên tố là 2 và 5.
Phân tích mỗi số sau ra thừa số nguyên tố rồi tìm tập hợp các ước của mỗi số.
Lời giải:
a)
30 = 2 . 3 . 5.
Khi đó ta tìm được các ước của 30 là 1; 2; 3; 5; 6; 10; 15; 30
Vậy ta viết Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.
b)
Khi đó ta tìm được các ước của 225 là: 1; 3; 5; 9; 15; 25; 45; 75; 225
Khi đó ta viết Ư(225) = {1; 3; 5; 9; 15; 25; 45; 75; 225}.
c)
210 = 2.3.5.7.
Khi đó ta tìm được các ước của 210 là: 1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210.
Vậy
Ư(210) = {1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210}.
d)
Ư(242) = {1; 2; 11; 22; 121; 242}.
Cho số . Trong các số 4, 7, 9, 21, 24, 34, 49 số nào là ước của a?
Lời giải:
Phân tích các số trên ra thừa số nguyên tố ta được:
7 = 7
21 = 3.7
34 = 2.17
Số nào có chung thừa số nguyên tố và thừa số đó có số mũ nhỏ hơn các thừa số nguyên tố trong phân tích của a thì sẽ là ước của a. Do đó ta thấy các ước của a là: 4; 7; 9; 21; 24.
Lời giải:
Vì 60 chia hết cho 15 hay 15 là ước của 60 nên Bình hoàn toàn có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay.
Toán lớp 6 trang 34 Em có biết
Để tính số các ước của một số tự nhiên n (n>1) ta phân tích số n ra thừa số nguyên tố.
Nếu thì n có (m + 1)(k + 1) ước;
Nếu thì n có (m + 1)(k + 1)(h + 1) ước.
Hãy áp dụng cho một số tự nhiên cụ thể để xem cách tính trên có đúng không?
Lời giải:
Ví dụ 1: số
Áp dụng công thức trên thì 225 có (2 + 1)(2 + 1) = 3.3 = 9 ước.
Ta có tập hợp ước của 225 là Ư(225) = {1; 3; 5; 9; 15; 25; 45; 75; 225} có tổng là 9 ước nên công thức trên là đúng.
Ví dụ 2: số 30 = 2.3.5
Áp dụng công thức trên thì 30 có (1 + 1)(1 + 1)(1 + 1) = 8 ước.
Ta có tập hợp ước của 30 là Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30} có 6 ước nên công thức đã cho là đúng.
Tương tự, em có thể đưa ra nhiều trường hợp khác.
Lý thuyết Toán 6 Bài 10: Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố - Chân trời sáng tạo
1. Số nguyên tố. Hợp số
− Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
− Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước.
Ví dụ:
+ Số 13 chỉ có hai ước là 1 và 13 nên 13 là số nguyên tố.
+ Số 15 có bốn ước là 1; 3; 5; 15 nên 15 là hợp số.
Lưu ý: Số 0 và số 1 không là số nguyên tố cũng không là hợp số.
2. Phân tích một số ra thừa số nguyên tố
a. Thế nào là phân tích một số ra thừa số nguyên tố?
Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.
Chú ý:
− Mọi số tự nhiên lớn hơn 1 đều phân tích được thành tích các thừa số nguyên tố.
− Mỗi số nguyên tố chỉ có một dạng phân tích ra thừa số nguyên tố là chính số đó.
− Có thể viết gọn dạng phân tích một số ra thừa số nguyên tố bằng cách dùng lũy thừa.
Ví dụ:
- Số 5 là số nguyên tố và dạng phân tích ra thừa số nguyên tố của nó là 5.
- Số 18 là hợp số và 18 được phân tích ra thừa số nguyên tố là:
18 = 2 . 3 . 3 (hoặc viết gọn là 18 = 2 . 32).
b. Cách phân tích một số ra thừa số nguyên tố
Cách 1: Phân tích một số ra thừa số nguyên tố theo cột dọc.
Chia số n cho một số nguyên tố (xét từ nhỏ đến lớn), rồi chia thương tìm được cho một số nguyên tố (cũng xét từ nhỏ đến lớn), cứ tiếp tục như vậy cho đến khi thương bằng 1.
Ví dụ: Số 76 được phân tích ra thừa số nguyên tố theo cột dọc như sau:
76 |
2 |
38 |
2 |
19 |
19 |
1 |
Vậy 76 = 22 . 19.
Chú ý: Viết các thừa số nguyên tố theo thứ tự từ bé đến lớn, tích các thừa số giống nhau dưới dạng lũy thừa.
Cách 2: Phân tích một số ra thừa số nguyên tố theo sơ đồ cây.
Bước 1: Phân tích số n thành tích của hai số bất kì khác 1 và chính nó.
Bước 2: Tiếp tục phân tích ước thứ nhất và ước thứ hai thành tích của hai số bất kì khác 1 và chính nó.
Bước 3: Cứ như vậy đến khi nào xuất hiện số nguyên tố thì dừng lại.
Bước 4: Số n bằng tích của các số cuối cùng của mỗi nhánh.
Ví dụ: Số 36 được phân tích ra thừa số nguyên tố theo sơ đồ cây như sau:
Vậy 36 = 32 . 22.
Xem thêm lời giải bài tập Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 6 (hay nhất) - Chân trời sáng tạo
- Soạn văn lớp 6 (ngắn nhất) - Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 6 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 6 – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 6 - Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn 6 - Chân trời sáng tạo
- Văn mẫu lớp 6 – Chân trời sáng tạo
- Giải sgk Địa Lí 6 – Chân trời sáng tạo
- Giải sbt Địa Lí 6 – Chân trời sáng tạo
- Lý thuyết Địa Lí 6 – Chân trời sáng tạo
- Giải sgk Lịch sử 6 – Chân trời sáng tạo
- Giải sbt Lịch sử 6 – Chân trời sáng tạo
- Lý thuyết Lịch sử lớp 6 – Chân trời sáng tạo
- Giải sgk GDCD 6 – Chân trời sáng tạo
- Giải sbt GDCD 6 – Chân trời sáng tạo
- Lý thuyết GDCD 6 – Chân trời sáng tạo
- Giải sgk Công nghệ 6 – Chân trời sáng tạo
- Giải sbt Công nghệ 6 – Chân trời sáng tạo
- Lý thuyết Công nghệ 6 – Chân trời sáng tạo
- Giải sgk Khoa học tự nhiên 6 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 6 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 6 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 6 - Friends plus
- Trọn bộ Từ vựng Tiếng Anh 6 Friends plus đầy đủ nhất
- Ngữ pháp Tiếng Anh 6 Friends plus
- Giải sbt Tiếng Anh 6 - Friends plus
- Bài tập Tiếng Anh 6 Friends plus theo Unit có đáp án