Giải Toán 6 trang 34 Tập 1 Chân trời sáng tạo
Với giải bài tập Toán 6 trang 34 Tập 1 trong Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 6 trang 34 Tập 1.
Giải Toán 6 trang 34 Tập 1
a) Hai số tự nhiên liên tiếp đều là số nguyên tố.
b) Ba số lẻ liên tiếp đều là số nguyên tố.
Lời giải:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố là 2 và 3.
b) Ba số lẻ liên tiếp đều là số nguyên tố là 3; 5; 7.
Mỗi khẳng định sau đúng hay sai?
a) Tích của hai số nguyên tố luôn là một số lẻ.
b) Tích của hai số nguyên tố có thể là một số chẵn.
c) Tích của hai số nguyên tố có thể là một số nguyên tố.
Lời giải:
a) Ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố luôn là một số lẻ” là SAI.
b) Như ý a ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố có thể là một số chẵn” là ĐÚNG.
c) Tích của hai số nguyên tố a, b sẽ có các ước là 1, a, b và ab. Do đó tích của chúng có nhiều hơn hai ước nên không là một số nguyên tố.
Vì vậy khẳng định “Tích của hai số nguyên tố có thể là một số nguyên tố” là SAI.
Phân tích mỗi số sau ra thừa số nguyên tố rồi cho biết mỗi số chia hết cho các số nguyên tố nào?
Lời giải:
a)
80 có thể chia hết cho các số nguyên tố là 2 và 5.
b)
120 có thể chia hết cho các số nguyên tố là 2, 3, 5.
c)
225 có thể chia hết cho các số nguyên tố là 3 và 5.
d)
400 có thể chia hết cho các số nguyên tố là 2 và 5.
Phân tích mỗi số sau ra thừa số nguyên tố rồi tìm tập hợp các ước của mỗi số.
Lời giải:
a)
30 = 2 . 3 . 5.
Khi đó ta tìm được các ước của 30 là 1; 2; 3; 5; 6; 10; 15; 30
Vậy ta viết Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.
b)
Khi đó ta tìm được các ước của 225 là: 1; 3; 5; 9; 15; 25; 45; 75; 225
Khi đó ta viết Ư(225) = {1; 3; 5; 9; 15; 25; 45; 75; 225}.
c)
210 = 2.3.5.7.
Khi đó ta tìm được các ước của 210 là: 1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210.
Vậy
Ư(210) = {1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210}.
d)
Ư(242) = {1; 2; 11; 22; 121; 242}.
Cho số . Trong các số 4, 7, 9, 21, 24, 34, 49 số nào là ước của a?
Lời giải:
Phân tích các số trên ra thừa số nguyên tố ta được:
7 = 7
21 = 3.7
34 = 2.17
Số nào có chung thừa số nguyên tố và thừa số đó có số mũ nhỏ hơn các thừa số nguyên tố trong phân tích của a thì sẽ là ước của a. Do đó ta thấy các ước của a là: 4; 7; 9; 21; 24.
Lời giải:
Vì 60 chia hết cho 15 hay 15 là ước của 60 nên Bình hoàn toàn có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay.
Toán lớp 6 trang 34 Em có biết
Để tính số các ước của một số tự nhiên n (n>1) ta phân tích số n ra thừa số nguyên tố.
Nếu thì n có (m + 1)(k + 1) ước;
Nếu thì n có (m + 1)(k + 1)(h + 1) ước.
Hãy áp dụng cho một số tự nhiên cụ thể để xem cách tính trên có đúng không?
Lời giải:
Ví dụ 1: số
Áp dụng công thức trên thì 225 có (2 + 1)(2 + 1) = 3.3 = 9 ước.
Ta có tập hợp ước của 225 là Ư(225) = {1; 3; 5; 9; 15; 25; 45; 75; 225} có tổng là 9 ước nên công thức trên là đúng.
Ví dụ 2: số 30 = 2.3.5
Áp dụng công thức trên thì 30 có (1 + 1)(1 + 1)(1 + 1) = 8 ước.
Ta có tập hợp ước của 30 là Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30} có 6 ước nên công thức đã cho là đúng.
Tương tự, em có thể đưa ra nhiều trường hợp khác.
Xem thêm lời giải bài tập Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 6 sách Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 6 (hay nhất) - Chân trời sáng tạo
- Soạn văn lớp 6 (ngắn nhất) - Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn 6 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 6 – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 6 - Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn 6 - Chân trời sáng tạo
- Văn mẫu lớp 6 – Chân trời sáng tạo
- Giải sgk Địa Lí 6 – Chân trời sáng tạo
- Giải sbt Địa Lí 6 – Chân trời sáng tạo
- Lý thuyết Địa Lí 6 – Chân trời sáng tạo
- Giải sgk Lịch sử 6 – Chân trời sáng tạo
- Giải sbt Lịch sử 6 – Chân trời sáng tạo
- Lý thuyết Lịch sử lớp 6 – Chân trời sáng tạo
- Giải sgk GDCD 6 – Chân trời sáng tạo
- Giải sbt GDCD 6 – Chân trời sáng tạo
- Lý thuyết GDCD 6 – Chân trời sáng tạo
- Giải sgk Công nghệ 6 – Chân trời sáng tạo
- Giải sbt Công nghệ 6 – Chân trời sáng tạo
- Lý thuyết Công nghệ 6 – Chân trời sáng tạo
- Giải sgk Khoa học tự nhiên 6 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 6 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 6 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 6 - Friends plus
- Trọn bộ Từ vựng Tiếng Anh 6 Friends plus đầy đủ nhất
- Ngữ pháp Tiếng Anh 6 Friends plus
- Giải sbt Tiếng Anh 6 - Friends plus
- Bài tập Tiếng Anh 6 Friends plus theo Unit có đáp án