Giải Toán 10 trang 93 Tập 1 Chân trời sáng tạo
Với giải bài tập Toán lớp 10 trang 93 Tập 1 trong Bài 2: Tổng và hiệu của hai vectơ sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 93 Tập 1.
Giải Toán 10 trang 93 Tập 1
Lời giải:
a) Hình bình hành ABCD có tâm O nên O là trung điểm của BD.
Do nên M là trọng tâm của tam giác ADB.
Khi đó trên AO chọn M sao cho .
b) Do nên N là trọng tâm của tam giác DBC.
Khi đó trên CO chọn N sao cho .
c) Do nên P là trung điểm của MN (1).
Ta có AM = AO = AC = AC; CN = CO = AC = AC.
Do đó MN = AC.
MO = AO = AC = AC.
Khi đó MO = MN.
Mà O nằm giữa M và N nên O là trung điểm của MN (2).
Từ (1) và (2) suy ra P trùng O.
Bài tập
Lời giải:
a) Do ABCD là hình bình hành nên AB // CD, AB = CD.
Ta thấy hai vectơ và ngược hướng và nên .
Do đó .
b) Do O là giao điểm hai đường chéo của hình bình hành ABCD nên O là trung điểm của AC và BD.
Do O là trung điểm của AC nên .
Do O là trung điểm của BD nên .
Ta có .
.
Do đó .
Bài 2 trang 93 Toán lớp 10 Tập 1: Cho tứ giác ABCD, thực hiện các phép cộng và trừ vectơ sau:
Lời giải:
a)
b) .
c) .
Bài 3 trang 93 Toán lớp 10 Tập 1: Cho tam giác đều ABC cạnh bằng a. Tính độ dài của các vectơ:
Lời giải:
a) Ta có .
Do đó = a.
b) Dựng hình bình hành ABDC.
Gọi H là giao điểm của AD và BC.
Áp dụng quy tắc hình bình hành ta có .
Hình bình hành ABDC có AB = AC nên ABDC là hình thoi.
Do đó AD BC tại H.
Do tam giác ABC đều nên = 60o.
Xét tam giác ABH vuông tại H:
AH = AB . sin = a . sin 60o = .
Do H là giao điểm hai đường chéo của hình thoi ABDC nên H là trung điểm của AD.
Do đó AD = 2AH = 2 . = .
Vậy .
c) Ta có .
Do đó = a.
Lời giải:
a) Ta có ; .
Do ABCD là hình bình hành nên AB = CD.
Ta thấy hai vectơ và cùng hướng và nên .
Do đó .
b) Ta có .
Do đó .
Vậy .
Lời giải:
Dựng hình bình hành MBAD.
Do ba lực và cùng tác động vào vật tại điểm M và vật đứng yên nên
.
Do đó .
Áp dụng quy tắc hình bình hành ta có:
hay .
Do đó .
Hình bình hành MBAD có = 90o và MA = MB nên MBAD là hình vuông.
Áp dụng định lí Pythagore vào tam giác MAD vuông tại A có:
MD2 = MA2 + AD2
MD2 = 102 + 102
MD2 = 2.102
MD = N (do MD là độ dài đoạn thẳng nên MD > 0).
N.
Vậy cường độ của lực là N.
Lời giải:
Đặt tên các điểm đầu và điểm cuối của các vectơ và tên góc như trên hình.
Khi đó ABDC là hình chữ nhật.
Ta có = α (cùng phụ với β).
Do đó = 30o.
Tam giác ABD vuông tại B nên
BA = AD . cos = a . cos 30o = .
BD = AD. sin = a . sin 30o = .
Do ABDC là hình chữ nhật nên BD = AC = .
Vậy .
Lời giải:
Do nên K là trung điểm của AC.
Do đó K là giao điểm hai đường chéo của hình vuông ABCD.
Do nên G là trọng tâm của tam giác ABC.
Khi đó trên đoạn BK chọn điểm G sao cho .
Do nên H là trọng tâm của tam giác ADC.
Khi đó trên đoạn DK chọn điểm H sao cho .
Áp dụng định lí Pythagore vào tam giác ADC vuông tại D có:
AC2 = AD2 + DC2
AC2 = a2 + a2
AC2 = 2a2
AC = a (do AC là độ dài đoạn thẳng nên AC > 0)
Do K là trung điểm của AC nên AK = AC = .
Do đó .
Do ABCD là hình vuông nên AC = BD.
Do đó BD = a.
Do H là trọng tâm của tam giác ADC nên HK = DK = BD = BD = .
Do G là trọng tâm của tam giác ABC nên KG = BK = BD = BD = .
Do đó HK + KG = + hay HG = .
Do đó .
Do ABCD là hình vuông là K là giao điểm hai đường chéo nên AC BD tại K.
Áp dụng định lí Pythagore vào tam giác AKG vuông tại K có:
AG2 = AK2 + KG2
AG2 =
AG2 =
AG = (do AG là độ dài đoạn thẳng nên AG > 0)
Do đó .
Vậy ; ; .
Lời giải:
Đặt tên điểm đầu và điểm cuối của các vectơ như hình trên.
Khi đó vectơ vận tốc của con tàu là vectơ ; vectơ vận tốc của dòng nước là vectơ .
Khi đó vectơ tổng của hai vectơ trên là .
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B:
AC2 = AB2 + BC2
AC2 = 302 + 102
AC2 = 1 000
AC = (do AC là độ dài đoạn thẳng nên AC > 0)
Vậy độ dài tổng của hai vectơ trên là km/h.
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Tích của một số với một vectơ
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo