Giải Toán 10 trang 103 Tập 1 Chân trời sáng tạo

Với giải bài tập Toán lớp 10 trang 103 Tập 1 trong Bài tập cuối chương 5 sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 103 Tập 1.

1 272 22/02/2023


Giải Toán 10 trang 103 Tập 1

Bài 5 trang 103 Toán lớp 10 Tập 1Cho a,b là hai vectơ khác vectơ 0. Trong trường hợp nào thì đẳng thức sau đúng?

a) a+b=a+b ;

b) a+b=ab.

Lời giải:

a) a+b=a+b thì a+b2=a+b2.

a2+2.a.b+b2=a2+2a.b+b2

a.b=a.b

a.b=a.b.cosa,b nên cosa,b=1.

Do đó a,b=0°.

Vậy hai vectơ a b cùng hướng.

b) a+b=ab thì a+b2=ab2.

a2+2a.b+b2=a22a.b+b2

4a.b=0

4a.b.cosa,b=0

Do a,b là hai vectơ khác vectơ 0 nên cosa,b=0.

Do đó a,b=90°.

Vậy hai vectơ a b vuông góc với nhau.

Bài 6 trang 103 Toán lớp 10 Tập 1Cho a+b=0. So sánh độ dài, phương và hướng của hai vectơ a và b.

Lời giải:

Do a+b = 0 nên a+b=0.

Trường hợp 1. Cả hai vectơ a b đều là vectơ 0.

Khi đó hai vectơ a b cùng hướng và có độ dài bằng nhau.

Trường hợp 2. Cả hai vectơ a b đều khác vectơ 0.

Khi đó a=ba=b=b.

Do đó hai vectơ a b cùng phương, ngược hướng và có độ dài bằng nhau.

Bài 7 trang 103 Toán lớp 10 Tập 1Cho bốn điểm A, B, C, D. Chứng minh rằng AB=CD  khi và chỉ khi trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Lời giải:

Phần thuận: AB=CD thì trung điểm hai đoạn thẳng AD và BC trùng nhau.

Do AB=CD nên hai vectơ AB, CD cùng hướng và AB = CD.

Do hai vectơ AB, CD cùng hướng nên ta có 2 trường hợp:

Trường hợp 1. Đường thẳng AB và CD trùng nhau, lại có AB = CD nên trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Trường hợp 2. Đường thẳng AB và CD song song với nhau.

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Đường thẳng AB và CD song song với nhau, lại có AB = CD nên ABDC là hình bình hành.

Khi đó tâm O của hình bình hành ABCD là giao điểm hai đường chéo AD và BC nên O là trung điểm của AD và BC tức trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Phần đảo: Trung điểm của hai đoạn thẳng AD và BC trùng nhau thì AB=CD.

Trường hợp 1. Hai đường thẳng AD và BC trùng nhau.

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Gọi trung điểm của AD và BC là O.

Do O là trung điểm của AD nên OA = OD.

Do O là trung điểm của BC nên OB = OC.

Do đó OB - OA = OC - OD hay AB = CD.

Ta thấy hai vectơ AB CD cùng hướng và AB = CD nên AB=CD.

Trường hợp 2. Hai đường thẳng AD và BC cắt nhau.

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Hai đường thẳng AD và BC cắt nhau tại điểm O, điểm O là trung điểm của AD và BC nên ABDC là hình bình hành.

Do đó AB // CD và AB = CD.

Ta thấy hai vectơ AB CD cùng hướng và AB = CD nên AB=CD.

Bài 8 trang 103 Toán lớp 10 Tập 1Cho tam giác ABC. Bên ngoài tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh rằng RJ+IQ+PS=0.

Lời giải:

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Ta có RJ+IQ+PS=RA+AJ+IB+BQ+PC+CS.

Do ABIJ là hình bình hành nên AJ=IB.

Do CARS là hình bình hành nên RA=CS.

Do BCPQ là hình bình hành nên BQ=PC.

Do đó RA+AJ+IB+BQ+PC+CS=CSIB+IBPC+PC+CS

=CS+CS+IB+IB+PC+PC=0.

Vậy RJ+IQ+PS=0.

Bài 9 trang 103 Toán lớp 10 Tập 1Một chiếc máy bay được biết là đang bay về phía bắc với tốc độ 45 m/s, mặc dù vận tốc của nó so với mặt đất là 38 m/s theo hướng nghiêng một góc 20° về phía tây bắc (Hình 2). Tính tốc độ của gió.

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Trong hình trên ta có vectơ v1 là tốc độ của máy bay bay về phía bắc, vectơ v tốc độ của máy bay so với mặt đất, vectơ v2 là tốc độ của gió.

Khi đó độ dài ba vectơ v,v1 v2 tạo thành độ dài ba cạnh của tam giác ABC với AB = v1 = 45, BC = v2, AC = v = 38.

Áp dụng định lí cos trong tam giác ABC ta được:

BC2 = AB2 + AC2 – 2.AB.AC.cosA

v2 = 452 + 382 – 2.45.38.cos20°

v2 ≈ 255,3

v ≈ 15,98

Vậy tốc độ của gió khoảng 15,98 m/s.

Bài 10 trang 103 Toán lớp 10 Tập 1: Cho tam giác đều ABC có O là trọng tâm và M là một điểm tùy ý trong tam giác. Gọi D, E, F lần lượt là chân đường vuông góc hạ từ M đến BC, AC, AB. Chứng minh rằng MD+ME+MF=32MO.

Lời giải:

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Tam giác ABC đều nên ABC^=ACB^=BAC^=60°.

Qua M kẻ NS // AB, PT // AC, RQ // BC.

Do NS //AB nên MNT^=ABC^=60° MSR^=BAC^=60°.

Do PT // AC nên MTN^=ACB^=60° MPQ^=BAC^=60°.

Do RQ // BC nên MRS^=ACB^=60° MQP^=ABC^=60°.

Khi đó các tam giác MNT, MRS và MPQ là các tam giác đều.

Tam giác MNT đều có MD  NT nên D là trung điểm của NT.

Tam giác MRS đều có ME  RS nên E là trung điểm của RS.

Tam giác MPQ đều có MF PQ nên F là trung điểm của PQ.

Do D là trung điểm của NT nên MN+MT=2MD.

Do E là trung điểm của RS nên MR+MS=2ME.

Do F là trung điểm của PQ nên MP+MQ=2MF.

Do đó 2MD+2ME+2MF=MN+MT+MR+MS+MP+MQ

=MN+MQ+MT+MR+MS+MP

Tứ giác MNBQ có MN // BQ và MQ // BN nên MNBQ là hình bình hành.

Tứ giác MTCR có MT // CR và MR // CT nên MTCR là hình bình hành.

Tứ giác MSAP có MP // AS và MS // AP nên MSAP là hình bình hành.

Khi đó áp dụng quy tắc hình bình hành ta có:

MN+MQ=MB; MT+MR=MC; MS+MP=MA.

Do đó MN+MQ+MT+MR+MS+MP=MA+MB+MC.

Do O là trọng tâm của tam giác ABC nên MA+MB+MC=3MO hay

2MD+2ME+2MF=3MO.

Do đó MD+ME+MF=32MO.

Bài 11 trang 103 Toán lớp 10 Tập 1Một xe goòng được kéo bởi một lực F có độ lớn là 50 N, di chuyển theo quãng đường từ A đến B có chiều dài 200 m. Cho biết góc giữa F và AB là 30° và F được phân tích thành 2 lực F1,F2  (Hình 3). Tính công sinh bởi các lực F,  F1 và F2.

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Đặt tên điểm đầu và điểm cuối của các vectơ như hình trên.

Tam giác ADE vuông tại E nên cos 30o = AEAD

 AE = AD . cos 30o = 50 . 32 = 253 N.

Ta thấy F1AB nên F1.AB=F1.AB.cosF1,AB=F1.AB.cos90°=0 J.

F2 AB là hai vectơ cùng hướng nên F2,AB=0°.

Khi đó F2.AB=F2.AB.cosF2,AB=F2.AB.cos0° = 253 . 200 = 50003 J.

F.AB=F.AB.cosF,AB=F.AB.cos30° = 50 . 200 . 32 = 50003 J.

Vậy công sinh bởi các lực F,  F1 F2 lần lượt là 50003 J, 50003 J, 0 J.

Bài 12 trang 103 Toán lớp 10 Tập 1Một chiếc thuyền cố gắng đi thẳng qua một con sông với tốc độ 0,75 m/s. Tuy nhiên, dòng chảy của nước trên con sông đó chảy với tốc độ 1,20 m/s về hướng bên phải. Gọi v1,v2,v lần lượt là vận tốc của thuyền so với dòng nước, vận tốc của dòng nước so với bờ và vận tốc của thuyền so với bờ.

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

a) Tính độ dài của các vectơ v1,v2,v.

b) Tốc độ dịch chuyển của thuyền so với bờ là bao nhiêu?

c) Hướng di chuyển của thuyền lệch một góc bao nhiêu so với bờ?

Lời giải:

Giải Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Đặt tên điểm đầu và điểm cuối của các vectơ như hình trên.

a) Ta có v1=0,75; v2=1,2.

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

AC2 = AB2 + BC2

 AC = 0,752+1,22 ≈ 1,4 (do AC là độ dài đoạn thẳng nên AC > 0)

v ≈ 1,4.

b) Khi đó tốc độ dịch chuyển của thuyền so với bờ khoảng 1,4 m/s.

c) Tam giác ABC vuông tại B nên tanACB^=ABAC=0,751,2=58.

ACB^ ≈ 32o

Ta có ACB^=θ nên θ≈ 32o.

Vậy hướng di chuyển của thuyền lệch một góc khoảng 32o so với bờ.

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải Toán 10 trang 102 Tập 1

Giải Toán 10 trang 103 Tập 1

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Số gần đúng và sai số

Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ

Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Bài tập cuối chương 6

1 272 22/02/2023


Xem thêm các chương trình khác: