Giải Toán 10 trang 102 Tập 1 Chân trời sáng tạo
Với giải bài tập Toán lớp 10 trang 102 Tập 1 trong Bài tập cuối chương 5 sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 102 Tập 1.
Giải Toán 10 trang 102 Tập 1
Bài 1 trang 102 Toán lớp 10 Tập 1: Cho ba vectơ đều khác vectơ . Các khẳng định sau đúng hay sai?
a) Nếu hai vectơ cùng phương với thì và cùng phương.
b) Nếu hai vectơ cùng ngược hướng với thì và cùng hướng.
Lời giải:
a) Hai vectơ và cùng phương nên (k1 ≠ 0).
Hai vectơ và cùng phương nên (k2 ≠ 0).
Khi đó .
Do đó hai vectơ và cùng phương.
Vậy khẳng định a đúng.
b) Hai vectơ và ngược hướng nên (k1 > 0).
Hai vectơ và ngược hướng nên (k2 > 0).
Khi đó với .
Do đó hai vectơ và cùng hướng.
Vậy khẳng định b đúng.
a) Tính độ dài của các vectơ .
b) Tìm trong hình các cặp vectơ đối nhau và có độ dài bằng .
Lời giải:
a) Áp dụng định lí Pythagore vào tam giác ABC vuông tại B:
AC2 = AB2 + BC2
AC2 = a2 + (3a)2
AC2 = 10a2
AC = a (do AC là độ dài đoạn thẳng nên AC > 0)
Do ABCD là hình chữ nhật nên AC = BD = a.
Vậy .
b) Ta thấy = .
Do đó độ dài các vectơ đó bằng độ dài của AC và BD.
Vậy các cặp vectơ đối nhau và có độ dài bằng là: và ; và ; và ; và .
Lời giải:
+) Tính :
Áp dụng quy tắc hình bình hành ta có .
Do đó .
Hình thoi ABCD có hai đường chéo AC và BD nên AC là tia phân giác của .
Do đó .
Tam giác ABC cân tại B nên .
Khi đó .
Áp dụng định lí côsin vào tam giác ABC ta có:
AC2 = AB2 + BC2 - 2.AB.BC.cos
AC2 = a2 + a2 - 2.a.a.cos 120o
AC2 = 2a2 + a2
AC2 = 3a2
AC = a (do AC là độ dài đoạn thẳng nên AC > 0)
Do đó .
+) Tính :
Ta có .
Do đó .
Tam giác ABD cân tại A có nên tam giác ABD đều.
Do đó BD = AB = a.
Do đó = a.
+) Tính :
Gọi H là giao điểm của AC và BD.
H là giao điểm hai đường chéo của hình thoi ABCD nên .
Do đó .
Khi đó .
Do đó .
a) Tìm tổng của các vectơ và ; và ; và .
Lời giải:
M là trung điểm của BC nên BM = MC = BC.
N là trung điểm của AD nên AN = ND = AD.
Do ABCD là hình bình hành nên BC = AD.
Do đó BM = MC = AN = ND.
Do nên CE = AN.
Do đó BM = MC = AN = ND = CE.
Khi đó ta có AMCN, NCED là các hình bình hành.
a) +) Tính :
Ta có nên .
+) Tính :
Ta có nên .
+) Tính :
Ta có nên .
b) +) Tính :
Ta có .
+) Tính :
Ta có .
+) Tính :
Ta có nên .
c) Ta có và .
Do đó .
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo