Bài 6 trang 118 Toán 7 Tập 2 | Cánh diều Giải Toán lớp 7
Lời giải Bài 6 trang 118 Toán 7 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải Toán 7 Cánh diều Bài 13: Tính chất ba đường cao của tam giác
Bài 6 trang 118 Toán 7 Tập 2: Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Chứng minh rằng:
a) Nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau;
b) Nếu tam giác ABC có hai điểm H, I trùng nhau thì tam giác ABC là tam giác đều.
Lời giải:
a)
GT |
∆ABC đều, G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. |
KL |
Bốn điểm G, H, I, O trùng nhau. |
Chứng minh (Hình vẽ dưới đây):
Kéo dài AI cắt BC tại M, kéo dài BI cắt AC tại N, kéo dài CP cắt AB tại P.
Khi đó AM là đường phân giác của ^BAC nên ^BAM=^CAM;
Do tam giác ABC đều nên AB = BC = CA.
Xét ∆ABM và ∆ACM có:
AB = AC (chứng minh trên),
^BAM=^CAM (chứng minh trên),
AM là cạnh chung
Do đó ∆ABM = ∆ACM (c.g.c).
Suy ra:
• ^AMB=^AMC (hai góc tương ứng);
• BM = CM (hai cạnh tương ứng).
Vì BM = CM nên M là trung điểm của BC.
Ta có ^AMB=^AMC, mà ^AMB+^AMC=180° nên .
Khi đó AM BC tại trung điểm M của BC nên AM là đường trung trực của đoạn thẳng BC cũng đồng thời là đường cao và đường trung tuyến kẻ từ A của ABC.
Chứng minh tương tự ta cũng có:
+) BN là đường trung trực của đoạn thẳng AC, đồng thời là đường cao và đường trung tuyến kẻ từ B của ABC.
+) CP là đường trung trực của đoạn thẳng AB, đồng thời là đường cao và đường trung tuyến kẻ từ C của ABC.
Mà AM, BN, CP cắt nhau tại I nên G, H, I, O trùng nhau.
b)
GT |
ABC, H là trực tâm, I là giao điểm của ba đường phân giác, I ≡ H |
KL |
ABC đều |
Chứng minh (Hình vẽ dưới đây):
Vì I là giao điểm ba đường phân giác, H là trực tâm của tam giác ABC (giả thiết) nên:
+ AI là đường phân giác và AH là đường cao kẻ từ A của ABC.
Mà I ≡ H (giả thiết) nên đường phân giác AI trùng với đường cao AH.
+ Tương tự đường phân giác BI trùng đường cao BH;
+ Đường phân giác CI trùng đường cao CH.
Gọi M, N, P lần lượt là chân đường cao (hay cũng chính là đường phân giác) kẻ từ A, B, C đến BC, CA, AB.
Xét ABM (vuông tại M) và ACM (vuông tại M) có:
(do AM là tia phân giác của ),
AM là cạnh chung
Do đó ABM = ACM (cạnh góc vuông – góc nhọn kề).
Suy ra AB = AC (hai cạnh tương ứng). (1)
Xét ABN (vuông tại N) và CBN (vuông tại N) có:
BN là cạnh chung,
(do BN là tia phân giác của ),
Do đó ABN = CBN (cạnh góc vuông – góc nhọn kề).
Suy ra AB = BC (hai cạnh tương ứng). (2)
Từ (1) và (2) suy ra AB = BC = CA do đó tam giác ABC là tam giác đều.
Vậy tam giác ABC đều.
Xem thêm các bài giải sách giáo khoa Toán 7 bộ sách Cánh diều hay, chi tiết khác:
Câu hỏi khởi động trang 116 Toán 7 Tập 2: Cho tam giác ABC. Gọi M, N, P lần lượt là hình chiếu của A, B, C trên các đường thẳng BC, CA, AB...
Hoạt động 1 trang 116 Toán 7: Cho tam giác ABC (Hình 133). Bằng cách sử dụng ê ke, vẽ hình chiếu M của điểm A trên đường thẳng BC...
Luyện tập 1 trang 117 Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Hãy đọc tên đường cao đi qua B, đường cao đi qua C...
Hoạt động 2 trang 117 Toán 7 Tập 2: Quan sát ba đường cao AM, BN, CP của tam giác ABC (Hình 137), cho biết ba đường cao...
Luyện tập 2 trang 117 Toán 7 Tập 2: Cho tam giác đều ABC có trọng tâm là G. Chứng minh G cũng là trực tâm của tam giác ABC...
Luyện tập 3 trang 118 Toán 7 Tập 2: Cho tam giác ABC có trực tâm H cũng là trọng tâm của tam giác. Chứng minh tam giác ABC đều...
Bài 1 trang 118 Toán 7 Tập 2: Cho tam giác ABC có H là trực tâm, H không trùng với đỉnh nào của tam giác. Nêu một tính chất của cặp đường thẳng...
Bài 2 trang 118 Toán 7 Tập 2: Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau...
Bài 3 trang 118 Toán 7 Tập 2: Cho tam giác nhọn ABC và điểm D nằm trong tam giác. Chứng minh rằng nếu DA vuông góc với BC...
Bài 4 trang 118 Toán 7 Tập 2: Cho tam giác nhọn ABC. Hai đường cao BE và CF cắt nhau tại H, . Tính và ...
Bài 5 trang 118 Toán 7 Tập 2: Trong Hình 139, cho biết AB // CD, AD // BC; H, K lần lượt là trực tâm các tam giác ABC và ACD...
Bài 6 trang 118 Toán 7 Tập 2: Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác...
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 1: Tập hợp Q các số hữu tỉ
Bài 2: Cộng, trừ, nhân, chia số hữu tỉ
Bài 3: Phép tính lũy thừa với số mũ tự nhiên của một số hữu tỉ
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất)– Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Giải sbt Ngữ văn lớp 7 – Cánh Diều
- Văn mẫu lớp 7 – Cánh Diều
- Soạn văn lớp 7 (ngắn nhất) – Cánh Diều
- Giải VBT Ngữ văn lớp 7 – Cánh diều
- Giải sgk Tiếng Anh 7 - Explore English
- Giải sgk Tiếng Anh 7 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 7 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 i-learn Smart World
- Bài tập Tiếng Anh 7 iLearn Smart World theo Unit có đáp án
- Giải sbt Tiếng Anh 7 - ilearn Smart World
- Giải sgk Lịch sử 7 – Cánh Diều
- Lý thuyết Lịch Sử 7 – Cánh Diều
- Giải sbt Lịch sử 7 – Cánh Diều
- Giải VBT Lịch sử 7 – Cánh diều
- Giải sgk Khoa học tự nhiên 7 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 7 – Cánh Diều
- Giải sbt Khoa học tự nhiên 7 – Cánh Diều
- Giải sgk Địa lí 7 – Cánh Diều
- Lý thuyết Địa Lí 7 – Cánh Diều
- Giải sbt Địa lí 7 – Cánh Diều
- Giải VBT Địa lí 7 – Cánh diều
- Giải sgk Tin học 7 – Cánh Diều
- Lý thuyết Tin học 7 – Cánh Diều
- Giải sbt Tin học 7 – Cánh Diều
- Giải sgk Giáo dục công dân 7 – Cánh Diều
- Lý thuyết Giáo dục công dân 7 – Cánh Diều
- Giải sbt Giáo dục công dân 7 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sgk Công nghệ 7 – Cánh Diều
- Lý thuyết Công nghệ 7 – Cánh Diều
- Giải sbt Công nghệ 7 – Cánh Diều
- Giải sgk Giáo dục thể chất 7 – Cánh Diều
- Giải sgk Âm nhạc 7 – Cánh Diều