Cho tam giác ABC có AM là đường trung tuyến (M ∈ BC). Lấy điểm E thuộc AM sao cho AE = 3EM

Lời giải Bài 5 trang 42 SBT Toán 8 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 8.

1 723 30/10/2023


Giải SBT Toán 8 Bài 1: Định lí Thalès trong tam giác

Bài 5 trang 42 SBT Toán 8 Tập 2: Cho tam giác ABC có AM là đường trung tuyến (M ∈ BC). Lấy điểm E thuộc AM sao cho AE = 3EM. Tia BE cắt AC tại N. Tính tỉ số ANNC.

Lời giải:

Cho tam giác ABC có AM là đường trung tuyến (M ∈ BC). Lấy điểm E thuộc AM

Lấy điểm F trên tia AM sao cho M là trung điểm của EF.

Tứ giác MEFC có hai hai đường chéo BC và EF cắt nhau tại trung điểm của mỗi đường nên tứ giác MEFC là hình bình hành.

Suy ra CF // BE và CF // EN.

Ta có AE = 3EM và ME = MF (vì M là trung điểm của EF).

Khi đó, AEEF=32.

Xét ∆ACF có CF // EN nên theo định lí Thalès, ta có: ANNC=AEEF=32.

Vậy ANNC=32.

1 723 30/10/2023


Xem thêm các chương trình khác: