Cho hình chóp cụt tam giác đều ABC.A'B'C' có đường cao HH'=2a. Cho biết AB = 2a

Lời giải Bài 9 trang 68 SBT Toán 11 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 524 15/11/2023


Giải SBT Toán 11 Bài 4: Khoảng cách trong không gian

Bài 9 trang 68 SBT Toán 11 Tập 2: Cho hình chóp cụt tam giác đều ABC.A'B'C' có đường cao HH'=2a . Cho biết AB = 2a, A'B'=a . Gọi B1, C1 lần lượt là trung điểm của AB, AC. Tính thể tích của:

a) Khối chóp cụt đều ABC.A'B'C' .

b) Khối lăng trụ AB1C1.A'B'C' .

Lời giải:

Cho hình chóp cụt tam giác đều ABC A'B'C' có đường cao HH' = 2a  Cho biết AB = 2a

a)

Áp dụng công thức: V=13hS+SS'+S' ,

Do ABC, A¢B¢C¢ là các tam giác đều nên: Cho hình chóp cụt tam giác đều ABC A'B'C' có đường cao HH' = 2a  Cho biết AB = 2a , thay vào công thức trên ta có:

V=13.2a.a23+a23.a234+a234

=23a.53a24+3a44=23a.53a24+3a22

=23a.53a24+3a22=23a.73a24=7a336.

b)Áp dụng công thức: V'=S'.h' , với S'=a234,h'=2a.

Ta có: V'=a234.2a.=a332 .

1 524 15/11/2023


Xem thêm các chương trình khác: