Xét tam giác ABC vuông cân tại A. Lấy trên cạnh BC hai điểm D, E sao cho BD = DE = EC

Lời giải Bài 3.27 trang 42 SBT Toán 8 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập SBT Toán 8.

1 1,075 19/08/2023


Giải SBT Toán 8 Bài 14: Hình thoi và hình vuông

Bài 3.27 trang 42 SBT Toán 8 Tập 1: Xét tam giác ABC vuông cân tại A. Lấy trên cạnh BC hai điểm D, E sao cho BD = DE = EC. Lấy các điểm F, G lần lượt thuộc cạnh AC, AB sao cho FE, GD vuông góc với BC. Chứng minh tứ giác DEFG là một hình vuông.

Lời giải:

Xét tam giác ABC vuông cân tại A. Lấy trên cạnh BC hai điểm D E sao cho BD = DE = EC

Do ∆ABC vuông cân tại A nên B^=C^=45°.

Xét ∆GBD vuông tại D và ∆EFC vuông tại E có:

BD = EC; B^=C^

Do đó ∆GBD = ∆FCE (cạnh góc vuông – góc nhọn kề)

Suy ra DGB^=EFC^

Mà B^+DGB^=90° nên DGB^=90°B^=90°45°=45°

Do đó DGB^=EFC^=45°

Suy ra ∆GBD vuông cân tại D và ∆EFC vuông cân tại E.

Vì vậy GD = BD, EF = EC.

Mà BD=DE=EC=13BC

Suy ra GD = DE = EF.

Do GD ⊥ BC, EF ⊥ BC nên GD // EF

Tứ giác GDEF có GD // EF, GD = EF nên GDEF là hình chữ nhật.

Lại có GD và DE là hai cạnh kề của hình chữ nhật GDEF bằng nhau nên GDEF là hình vuông.

1 1,075 19/08/2023


Xem thêm các chương trình khác: