Sách bài tập Toán 11 Bài 2 (Cánh diều): Đường thẳng vuông góc với mặt phẳng

Với giải sách bài tập Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 2.

1 370 lượt xem


Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 6 trang 93 SBT Toán 11 Tập 2: Cho mặt phẳng (P) và đường thẳng c không nằm trên (P). Khi đó, (P) ⊥ c nếu:

A. Mặt phẳng (P) chứa hai đường thẳng a, b thoả mãn a, b cùng vuông góc với đường thẳng c;

B. Mặt phẳng (P) chứa một đường thẳng vuông góc với đường thẳng c;

C. Mặt phẳng (P) chứa ít nhất hai đường thẳng vuông góc với đường thẳng c;

D. Mặt phẳng (P) chứa hai đường thẳng cắt nhau a, b thoả mãn a, b cùng vuông góc với đường thẳng c.

Lời giải:

Đáp án đúng là: D

Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.

Bài 7 trang 94 SBT Toán 11 Tập 2: Cho tam giác ABC. Số mặt phẳng đi qua A và vuông góc với cả AB, AC là:

A. 0;

B. 1;

C. 2;

D. Vô số.

Lời giải:

Đáp án đúng là: A

Có duy nhất một mặt phẳng đi qua A và vuông góc với AB.

Có duy nhất một mặt phẳng đi qua A và vuông góc với AC.

Mặt phẳng đi qua A và vuông góc với cả AB, AC khi và chỉ khi 3 điểm A, B, C thẳng hàng (vô lý vì 3 điểm A, B, C tạo thành tam giác ABC).

Vậy không tồn tại mặt phẳng đi qua A và vuông góc với cả AB, AC.

Bài 8 trang 94 SBT Toán 11 Tập 2: Cho điểm I và hai đường thẳng a, b thoả mãn a // b. Số mặt phẳng đi qua I và vuông góc với cả a, b là:

A. 0;

B. 1;

C. 2;

D. Vô số.

Lời giải:

Đáp án đúng là: B

Có duy nhất một mặt phẳng (P) đi qua điểm I và vuông góc với đường thẳng a.

Do a // b nên b ⊥ (P).

Vậy có duy nhất một mặt phẳng (P) đi qua điểm I và vuông góc với cả a, b.

Bài 9 trang 94 SBT Toán 11 Tập 2: Hình 13 gợi nên hình ảnh các đường thẳng a, b và mặt phẳng (P) trong không gian. Phát biểu nào sau đây là phù hợp?

Hình 13 gợi nên hình ảnh các đường thẳng a, b và mặt phẳng (P) trong không gian

A. a // b, b // (P);

B. a ⊥ b, b // (P);

C. a ⊥ b, b ⊥ (P);

D. a // b, b ⊥ (P).

Lời giải:

Đáp án đúng là: D

Từ hình vẽ ta thấy: a // b, b ⊥ (P).

Bài 10 trang 94 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (SAB), AB ⊥ BC. Xét những phát biểu sau:

(1): AB là hình chiếu của SB trên (ABC);

(2): SB là hình chiếu của SC trên (SAB);

(3): AC là hình chiếu của SC trên (ABC).

Số phát biểu đúng là:

A. 0;

B. 1;

C. 2;

D. 3.

Lời giải:

Đáp án đúng là: D

Cho hình chóp S.ABC có SA ⊥ (SAB), AB ⊥ BC. Xét những phát biểu sau

Do SA ⊥ (ABC) nên AB, AC lần lượt là hình chiếu của SB, SC trên (ABC).

Suy ra (1) và (3) đúng.

Do SA ⊥ (ABC) và BC ⊂ (ABC) nên SA ⊥ BC

Ta có: SA ⊥ BC; AB ⊥ BC;

SA ∩ AB = A trong (SAB).

Suy ra BC ⊥ (SAB).

Do đó SB là hình chiếu của SC trên (SAB) hay (2) đúng.

Vậy có 3 phát biểu đúng.

Bài 11 trang 94 SBT Toán 11 Tập 2: Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC). Trong mặt phẳng (ABC), gọi H là hình chiếu của A trên BC. Chứng minh rằng BC ⊥ A’H.

Lời giải:

Cho hình lăng trụ ABC.A’B’C’ có AA’ ⊥ (ABC). Trong mặt phẳng (ABC), gọi H là hình chiếu của A trên BC

Do AA’ ⊥ (ABC) nên AA’ ⊥ BC.

Ta có: BC ⊥ AA’; BC ⊥ AH;

AA’ ∩ AH = A trong (A’AH).

Suy ra: BC ⊥ (A’AH).

Mà A’H ⊂ (A’AH) nên BC ⊥ A’H.

Bài 12 trang 94 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có ASB^=BSC^=CSA^=90°. Gọi H là trực tâm của tam giác ABC. Chứng minh rằng SH ⊥ (ABC).

Lời giải:

Cho hình chóp S.ABC có góc ASB = góc BSC = góc CSA = 90 độ

Gọi AN, CM là hai đường cao của tam giác ABC.

Khi đó trực tâm H của tam giác ABC là giao điểm của AN và CM.

ASB^=CSA^=90° nên SA ⊥ SB, SA ⊥ SC.

⦁ Ta có: SA ⊥ SB, SA ⊥ SC;

SB ∩ SC = S trong (SBC).

Suy ra SA ⊥ (SBC). Do đó SA ⊥ BC.

⦁ Ta có: BC ⊥ AH, BC ⊥ SA (chứng minh trên);

SA ∩ AH = A trong (SAH).

Suy ra BC ⊥ (SAH). Do đó BC ⊥ SH.

Tương tự, ta có: AB ⊥ SH.

⦁ Ta có: AB ⊥ SH, BC ⊥ SH và AB ∩ BC = B trong (ABC).

Suy ra: SH ⊥ (ABC).

Bài 13 trang 94 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có ABCD là hình bình hành và SA = SC, SB = SD. Gọi O là giao điểm của AC và BD. Chứng minh rằng SO ⊥ (ABCD).

Lời giải:

Cho hình chóp S.ABCD có ABCD là hình bình hành và SA = SC, SB = SD. Gọi O là giao điểm của AC và BD

Vì ABCD là hình bình hành nên O là trung điểm của AC và BD.

⦁ Xét tam giác SAC có SA = SC nên tam giác SAC cân tại S.

Mà SO là đường trung tuyến của tam giác SAC.

Suy ra: SO là đường cao của tam giác SAC hay SO ⊥ AC.

⦁ Xét tam giác SBD có SB = SD nên tam giác SBD cân tại S.

Mà SO là đường trung tuyến của tam giác SBD.

Suy ra: SO là đường cao của tam giác SBD hay SO ⊥ BD.

Ta có: SO ⊥ AC, SO ⊥ BD;

AC ∩ BD = O trong (ABCD).

Suy ra: SO ⊥ (ABCD).

Bài 14 trang 95 SBT Toán 11 Tập 2: Cho hình hộp ABCD.A’B’C’D’ có ABCD là hình thoi, AA’ ⊥ (ABCD). Chứng minh rằng:

a) BB’ ⊥ (A’B’C’D’);

b) BD ⊥ A’C.

Lời giải:

Cho hình hộp ABCD.A’B’C’D’ có ABCD là hình thoi, AA’ ⊥ (ABCD)

a) Vì ABCD.A’B’C’D’ là hình hộp nên AA’ // BB’.

Mà AA’ ⊥ (ABCD) nên BB’ ⊥ (ABCD).

Mặt khác: (ABCD) // (A’B’C’D’) (tính chất hình hộp).

Suy ra: BB’ ⊥ (A’B’C’D’).

b) Vì ABCD là hình thoi nên BD ⊥ AC.

Ta có: AA’ ⊥ (ABCD) suy ra AA’ ⊥ BD (vì BD ⊂ (ABCD)).

Ta có: BD ⊥ AA’, BD ⊥ AC và AA’ ∩ AC = A trong (A’AC).

Suy ra: BD ⊥ (A’AC).

Từ đó ta có: BD ⊥ A’C.

Bài 15 trang 95 SBT Toán 11 Tập 2: Cho hình chóp O.ABC và điểm H không thuộc các đường thẳng AB, BC, CA sao cho OHA^=OHB^=OHC^=90°. Chứng minh rằng H thuộc mặt phẳng (ABC).

Lời giải:

Cho hình chóp O.ABC và điểm H không thuộc các đường thẳng AB, BC, CA sao cho

OHA^=OHB^=90° nên ta có OH ⊥ HA, OH ⊥ HB mà HA và HB cắt nhau tại H trong (HAB) nên OH ⊥ (HAB).

OHB^=OHC^=90° nên ta có OH ⊥ HB, OH ⊥ HC mà HB và HC cắt nhau tại H trong (HBC) nên OH ⊥ (HBC).

Ta thấy: (HAB) và (HBC) cùng đi qua H và vuông góc với OH nên (HAB) ≡ (HBC).

Hay (HAB) ≡ (HBC) ≡ (ABC).

Suy ra: H thuộc mặt phẳng (ABC).

Bài 16 trang 95 SBT Toán 11 Tập 2: Cho hình chóp S.ABC thoả mãn SA = SB = SC. Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC. Chứng minh rằng SO ⊥ (ABC).

Lời giải:

Cho hình chóp S.ABC thoả mãn SA = SB = SC. Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC

Gọi O’ là hình chiếu của S trên (ABC). Khi đó, SO’ ⊥ (ABC).

Mà O’A, O’B, O’C đều nằm trên (ABC) nên SO’ ⊥ O’A, SO’ ⊥ O’B, SO’ ⊥ O’C.

Xét tam giác SO’A và tam giác SO’B có:

SO'A^=SO'B^=90°;

SA = SB (gt);

SO’ chung

Suy ra ∆SO’A = ∆SO’B (cạnh huyền – cạnh góc vuông)

Do đó: O’A = O’B (hai cạnh tương ứng)

Tương tự: ∆SO’A = ∆SO’C, suy ra O’A = O’C.

Từ đó ta có: O’A = O’B = O’C hay O’ là tâm đường tròn ngoại tiếp tam giác ABC.

Suy ra: O ≡ O’, mà SO’ ⊥ (ABC).

Vậy SO ⊥ (ABC).

Bài 17 trang 95 SBT Toán 11 Tập 2: Cho tam giác ABC và các điểm M, N, P đôi một phân biệt thoả mãn MA = MB = MC, NA = NB = NC, PA = PB = PC. Chứng minh rằng M, N, P thẳng hàng.

Lời giải:

Cho tam giác ABC và các điểm M, N, P đôi một phân biệt thoả mãn MA = MB = MC, NA = NB = NC, PA = PB = PC

Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC.

Khi đó OA = OB = OC.

Trường hợp 1: Ba điểm M, N, P đều không thuộc mặt phẳng (ABC).

Xét hình chóp M.ABC có MA = MB = MC nên theo kết quả của Bài 16, trang 95, Sách bài tập Toán 11, Tập hai ta có: MO ⊥ (ABC)

Tương tự, từ NA = NB = NC, PA = PB = PC ta cũng có NO ⊥ (ABC), PO ⊥ (ABC).

Ta thấy: MO, NO, PO cùng đi qua điểm O và vuông góc với mặt phẳng (ABC).

Do đó ba đường thẳng MO, NO, PO trùng nhau hay M, N, P thẳng hàng.

Trường hợp 2: Trong ba điểm M, N, P có một điểm nằm trên (ABC).

Mà MA = MB = MC, NA = NB = NC, PA = PB = PC nên không mất tính tổng quát ta giả sử điểm M nằm trên (ABC).

Ta có MA = MB = MC, OA = OB = OC và M, O cùng nằm trong mp (ABC)

Suy ra: M ≡ O.

Tương tự trường hợp 1, từ NA = NB = NC, PA = PB = PC nên cũng ta có:

NO ⊥ (ABC), PO ⊥ (ABC).

Ta thấy: NO, PO cùng đi qua điểm O và vuông góc với mặt phẳng (ABC).

Do đó hai đường thẳng NO, PO trùng nhau hay O, N, P thẳng hàng hay M, N, P thẳng hàng.

Vậy M, N, P thẳng hàng.

Bài 18 trang 95 SBT Toán 11 Tập 2: Cho hình tứ diện đều ABCD. Chứng minh AB ⊥ CD.

Lời giải:

Cho hình tứ diện đều ABCD. Chứng minh AB ⊥ CD

Gọi M là trung điểm của CD.

Vì ABCD là tứ diện đều nên hai tam giác ACD và BCD là các tam giác đều.

Suy ra AM ⊥ CD, BM ⊥ CD.

Ta có: AM ⊥ CD, BM ⊥ CD và AM ∩ BM = M trong (ABM).

Suy ra CD ⊥ (ABM).

Mà AB ⊂ (ABM) nên CD ⊥ AB hay AB ⊥ CD.

Bài 19 trang 95 SBT Toán 11 Tập 2: Cho hình tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn. Gọi H, K lần lượt là trực tâm của các tam giác BCD, ACD. Chứng minh rằng:

a) AD ⊥ CH;

b*) HK ⊥ (ACD).

Lời giải:

Cho hình tứ diện ABCD có AB ⊥ (BCD), các tam giác BCD và ACD là những tam giác nhọn

a) Vì AB ⊥ (BCD), CH ⊂ (BCD) nên AB ⊥ CH hay CH ⊥ AB.

Do H là trực tâm của tam giác BCD nên CH ⊥ BD.

Ta có: CH ⊥ AB, CH ⊥ BD và AB ∩ BD = B trong (ABD).

Suy ra CH ⊥ (ABD).

Mà AD ⊂ (ABD) nên CH ⊥ AD hay AD ⊥ CH.

b) Trong (BCD), gọi I = BH ∩ CD mà H là trực tâm của tam giác BCD nên BI ⊥ CD.

Lại có: AB ⊥ (BCD), CD ⊂ (BCD) nên AB ⊥ CD.

⦁ Ta có: CD ⊥ BI, CD ⊥ AB và BI ∩ AB = B trong (ABI).

Suy ra CD ⊥ (ABI).

Mà HK ⊂ (ABI) nên CD ⊥ HK. (1)

⦁ Vì K là trực tâm của tam giác ACD nên CK ⊥ AD.

Ta có: AD ⊥ CH (theo câu a), AD ⊥ CK và CH ∩ CK = C trong (CHK).

Suy ra: AD ⊥ (CHK).

Mà HK ⊂ (CHK) nên AD ⊥ HK. (2)

Từ (1), (2) kết hợp với CD ∩ AD = D trong (ACD) nên ta có HK ⊥ (ACD).

Bài 20 trang 95 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA. Chứng minh rằng SA ⊥ (MNP).

Lời giải:

Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA

Gọi H, K, I lần lượt là trung điểm của AB, BC, CA.

Vì M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA nên ta có:

SMSH=SNSK=SPSI=23.

Theo định lý Thalès: MN // HK, MP // HI.

Mà HK ⊂ (ABC), IH ⊂ (ABC).

Suy ra: MN // (ABC), MP // (ABC).

Trong (MNP) có: MN ∩ MP = M, MN // (ABC), MP // (ABC).

Suy ra (MNP) // (ABC).

Lại có SA ⊥ (ABC) nên SA ⊥ (MNP).

Bài 21 trang 95 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD thoả mãn SA = SB = SC = SD. Chứng minh rằng tồn tại một đường tròn đi qua cả bốn đỉnh của tứ giác ABCD.

Lời giải:

Cho hình chóp S.ABCD thoả mãn SA = SB = SC = SD

Gọi O là hình chiếu của S trên (ABCD). Khi đó SO ⊥ (ABCD).

Mà OA, OB, OC, OD đều nằm trên (ABCD) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC, SO ⊥ OD.

Xét tam giác SOA và tam giác SOB có:

SOA^=SOB^=90°;

SA = SB (gt);

SO chung

Suy ra ∆SOA = ∆SOB (cạnh huyền – cạnh góc vuông)

Do đó: OA = OB (hai cạnh tương ứng)

Tương tự: ∆SOB = ∆SOC = ∆SOD nên OB = OC = OD.

Từ đó ta có: OA = OB = OC = OD hay O là tâm đường tròn đi qua bốn đỉnh của tứ giác ABCD.

Bài 22 trang 95 SBT Toán 11 Tập 2: Cho mặt phẳng (P) và hai điểm A, B sao cho B thuộc (P) và A không thuộc (P). Điểm C chuyển động trên mặt phẳng (P) thoả mãn ACB^=90°. Chứng minh rằng C chuyển động trên một đường tròn cố định trong (P).

Lời giải:

Cho mặt phẳng (P) và hai điểm A, B sao cho B thuộc (P) và A không thuộc (P)

Gọi H là hình chiếu của A trên (P).

Ta có: A là điểm cố định nên H cố định và HC là hình chiếu của AC trên (P).

Vì H là hình chiếu của A trên (P) nên AH ⊥ (P).

Mà BC ⊂ (P) nên AH ⊥ BC.

Ta có: BC ⊥ AH, BC ⊥ AC (vì ACB^=90°) và AH ∩ AC = A trong (AHC).

Suy ra BC ⊥ (AHC) nên BC ⊥ HC.

Do đó C chuyển động trên đường tròn đường kính HB cố định nằm trong (P).

Bài 23 trang 95 SBT Toán 11 Tập 2: Cho đoạn thẳng AB và mặt phẳng (P) sao cho (P) ⊥ AB và (P) cắt đoạn thẳng AB tại điểm H thoả mãn HA = 4 cm, HB = 9 cm. Điểm C chuyển động trong mặt phẳng (P) thoả mãn ACB^=90°. Chứng minh rằng điểm C thuộc đường tròn tâm H bán kính 6 cm trong mặt phẳng (P).

Cho đoạn thẳng AB và mặt phẳng (P) sao cho (P) ⊥ AB và (P) cắt đoạn thẳng AB tại điểm H

Lời giải:

ACB^=90° nên A, B, C không thẳng hàng.

Ta có: AB ⊥ (P), HC ⊂ (P) nên AB ⊥ HC.

Áp dụng hệ thức lượng trong tam giác ACB vuông tại C ta có:

HC2 = HA.HB = 4.9 = 36, suy ra HC = 6 (cm).

Ta thấy khi C chuyển động trong mặt phẳng (P) thoả mãn ACB^=90° thì C luôn cách H (với H là điểm cố định) một khoảng không đổi HC = 6 cm.

Vậy C thuộc đường tròn tâm H bán kính 6 cm trong (P).

Xem thêm lời giải SBT Toán lớp 11 bộ sách Cánh diều hay, chi tiết khác:

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

Bài 5: Khoảng cách

Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Bài tập cuối chương 8

1 370 lượt xem


Xem thêm các chương trình khác: