Sách bài tập Toán 11 Bài 2 (Cánh diều): Giới hạn của hàm số
Với giải sách bài tập Toán 11 Bài 2: Giới hạn của hàm số sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 2.
Giải SBT Toán 11 Bài 2: Giới hạn của hàm số
Bài 12 trang 74 SBT Toán 11 Tập 1: Giả sử và (L, M ∈ ℝ). Phát biểu nào sau đây là sai?
Lời giải:
Đáp án đúng là: D
Với và (L, M ∈ ℝ) thì (nếu M ≠ 0).
Do vậy đáp án D sai vì thiếu điều kiện M ≠ 0.
A. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L thì .
B. Nếu với dãy số (xn) bất kì, xn → x0, ta có f(xn) → L thì .
C. Nếu với dãy số (xn) bất kì, x0 < xn < b và xn → L, ta có f(xn) → x0 thì .
D. Nếu với dãy số (xn) bất kì, xn < x0 và xn → x0, ta có f(xn) → L thì .
Lời giải:
Đáp án đúng là: A
Theo lí thuyết, ta có: Cho hàm số y = f(x) xác định trên khoảng (x0; b), nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L thì .
Bài 14 trang 75 SBT Toán 11 Tập 1: Với c, k là các hằng số và k nguyên dương thì
Lời giải:
Đáp án đúng là: A
Với c, k là các hằng số và k nguyên dương, ta luôn có .
Bài 15 trang 75 SBT Toán 11 Tập 1: Phát biểu nào sau đây là đúng?
c. Nếu f(x) ≥ 0 và thì L ≥ 0 và .
Lời giải:
Đáp án đúng là: C
Theo lí thuyết ta có: Nếu f(x) ≥ 0 và thì L ≥ 0 và .
A. Nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L thì .
B. Nếu với dãy số (xn) bất kì, xn < a và xn → +∞, ta có f(xn) → L thì .
C. Nếu với dãy số (xn) bất kì, xn > a, ta có f(xn) → L thì .
D. Nếu với dãy số (xn) bất kì, xn > a và xn → L, ta có f(xn) →+∞ thì .
Lời giải:
Đáp án đúng là: A
Theo lí thuyết, ta có: Cho hàm số y = f(x) xác định trên khoảng (a ; + ∞), nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L thì .
Bài 17 trang 75 SBT Toán 11 Tập 1: Sử dụng định nghĩa, chứng minh rằng:
Lời giải:
a) Xét hàm số f(x) = x3. Giả sử (xn) là dãy số bất kì, thỏa mãn limxn = – 2.
Ta có limf(xn) = .
Vậy .
b) Xét hàm số .
Giả sử (xn) là dãy số bất kì, thỏa mãn xn ≠ – 2 và lim xn = – 2.
Ta có .
Vậy .
Bài 18 trang 75 SBT Toán 11 Tập 1: Cho , chứng minh rằng:
Lời giải:
a) .
b) .
c) .
Bài 19 trang 76 SBT Toán 11 Tập 1: Quan sát đồ thị hàm số ở Hình 2 và cho biết các giới hạn sau: .
Lời giải:
Dựa vào đồ thị hàm số, ta có:
;
;
;
.
Bài 20 trang 76 SBT Toán 11 Tập 1: Tính các giới hạn sau:
Lời giải:
a) = – 4 – 3 + 1 = – 6.
b) .
c) Vì .
Do đó, .
d) Vì
và .
Do đó, .
e) Vì ; và x – 2 > 0 với mọi x > 2.
Do đó, .
g) Vì ; và x + 2 > 0 với mọi x > – 2.
Do đó, .
Bài 21 trang 76 SBT Toán 11 Tập 1: Tính các giới hạn sau:
Lời giải:
a) .
b) .
c)
d)
.
e) .
g) .
Bài 22 trang 76 SBT Toán 11 Tập 1: Cho . Tính:
Lời giải:
Điều này mâu thuẫn với giả thiết .
b) Ta có .
Bài 23 trang 76 SBT Toán 11 Tập 1: Cho hàm số f(x) thoả mãn . Tính .
Lời giải:
Ta có
.
Vậy .
Bài 24 trang 76 SBT Toán 11 Tập 1: Cho số thực a và hàm số (x) thoả mãn . Chứng minh rằng:
Lời giải:
Ta có
.
Vậy .
Lời giải:
Ta có g(10) = 45 . 102 – 103.
Khi đó
.
Vậy = 600.
Từ kết quả trên, ta thấy tốc độ tăng người bệnh ngay tại thời điểm t = 10 ngày là 600 người/ngày.
Lý thuyết Giới hạn của hàm số
I. Giới hạn hữu hạn của hàm số tại một điểm
1. Định nghĩa
Cho khoảng K chứa điểm và hàm số xác định trên K hoặc trên . Hàm số có giới hạn là số L khi dần tới nếu với dãy số bất kì, và , ta có
Kí hiệu hay , khi .
2. Phép toán trên giới hạn hữu hạn của hàm số
a, Nếu và thì
b, Nếu với mọi và thì và .
3. Giới hạn một phía
- Cho hàm số xác định trên khoảng . Số L được gọi là giới hạn bên trái của hàm số khi nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
- Cho hàm số xác định trên khoảng . Số L là giới hạn bên của hàm số khi nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
*Nhận xét:
II. Giới hạn hữu hạn của hàm số tại vô cực
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
* Nhận xét:
- Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
- Với c là hằng số, k là một số nguyên dương ta có:
, ,.
III. Giới hạn vô cực (một phía) của hàm số tại một điểm
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn khi nếu với dãy số bất kì, và ta có .
Kí hiệu hay khi
- Các giới hạn được định nghĩa tương tự.
IV. Giới hạn vô cực của hàm số tại vô cực
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn khi về bên trái nếu với dãy số bất kì, và ta có , kí hiệu .
Kí hiệu hay khi .
- Các giới hạn được định nghĩa tương tự.
* Chú ý:
- k là số nguyên dương chẵn.
- k là số nguyên dương lẻ.
Xem thêm Lời giải bài tập SBT Toán 11 sách Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều