Sách bài tập Toán 11 Bài 5 (Cánh diều): Khoảng cách
Với giải sách bài tập Toán 11 Bài 5: Khoảng cách sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 5.
Giải SBT Toán 11 Bài 5: Khoảng cách
Bài 45 trang 109 SBT Toán 11 Tập 2: Cho hình chữ nhật ABCD có AB = 3a, AD = 4a.
a) Khoảng cách từ điểm A đến đường thẳng BC bằng:
B. 3a;
C. 4a;
D. 5a.
b) Khoảng cách từ điểm A đến đường thẳng BD bằng:
A. 2,4a;
B. 3a;
C. 4a;
D. 5a.
c) Khoảng cách giữa hai đường thẳng AB và CD bằng:
A. 2,4a;
B. 3a;
C. 4a;
D. 5a.
Lời giải:
a) Đáp án đúng là: B
Do ABCD là hình chữ nhật nên AB ⊥ BC. Như vậy khoảng cách từ điểm A đến đường thẳng BC bằng độ dài đoạn thẳng AB và bằng 3a.
Vậy d(A, BC) = 3a.
b) Đáp án đúng là: A
Gọi H là hình chiếu của A trên BD nên ta có AH ⊥ BD. Như vậy khoảng cách từ điểm A đến đường thẳng BD là độ dài đoạn thẳng AH.
Do ABCD là hình chữ nhật nên AB ⊥ AD.
Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, đường cao AH ta có:
Vậy d(A, BD) = 2,4a.
c) Đáp án đúng là: C
Do ABCD là hình chữ nhật nên AB // CD và AD ⊥ CD. Như vậy khoảng cách giữa hai đường thẳng AB và CD bằng khoảng cách từ điểm A đến đường thẳng CD (vì AB // CD) và bằng AD = 4a (vì AD ⊥ CD).
Vậy d(AB, CD) = 4a.
A. 2,7 m;
B. 2,8 m;
C. 2,9 m;
D. 3,0 m.
Lời giải:
Vì tường đứng thẳng và vuông góc với mặt đất nên ta có MH vuông góc với mặt đất. Khi đó, khoảng cách từ vị trí M đến mặt đất chính là độ dài đoạn thẳng MH.
Xét tam giác OHM vuông tại H, MO = 3 m, ta có:
⇒ MH = MO.sin65° = 3.sin65° ≈ 2,7.
Vậy khoảng cách từ vị trí M đến mặt đất gần bằng 2,7 m.
a) Từ điểm C đến mặt phẳng (SAB);
b) Giữa hai đường thẳng SA và BC;
c) Từ điểm A đến mặt phẳng (SBC);
d) Từ điểm B đến mặt phẳng (SAC);
e*) Giữa hai đường thẳng AB và SC.
Lời giải:
a) Do SA ⊥ (ABC), BC ⊂ (ABC) nên SA ⊥ BC.
Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB)
Suy ra BC ⊥ (SAB).
Như vậy: d(C, (SAB)) = BC = 4a.
b) Do SA ⊥ (ABC), AB ⊂ (ABC) nên SA ⊥ AB.
Mặt khác AB ⊥ BC.
Suy ra AB là đoạn vuông góc chung của hai đường thẳng SA và BC.
Như vậy: d(SA, BC) = AB = 3a.
c) Gọi H là hình chiếu của điểm A trên SB hay AH ⊥ SB.
Do BC ⊥ (SAB), AH ⊂ (SAB) nên BC ⊥ AH.
Ta có: AH ⊥ BC, AH ⊥ SB và BC ∩ SB = B trong (SBC)
Suy ra AH ⊥ (SBC).
Như vậy: d(A, (SBC)) = AH.
Áp dụng hệ thức lượng trong tam giác SAB vuông tại A (SA ⊥ AB), đường cao AH ta có:
Vậy
d) Gọi I là hình chiếu của B trên AC hay BI ⊥ AC.
Do SA ⊥ (ABC), BI ⊂ (ABC) nên SA ⊥ BI.
Ta có: BI ⊥ AC, BI ⊥ SA, AC ∩ SA = A trong (SAC)
Suy ra BI ⊥ (SAC).
Như vậy: d(B, (SAC)) = BI.
Áp dụng hệ thức lượng trong tam giác ABC vuông tại B (AB ⊥ BC), đường cao BI ta có:
Vậy
e*) · Lấy D ∈ (ABC) sao cho ABCD là hình bình hành.
Mà (do AB ⊥ BC) nên ABCD là hình chữ nhật.
Suy ra CD ⊥ AD.
Do SA ⊥ (ABC), CD ⊂ (ABC) nên SA ⊥ CD.
Ta có: CD ⊥ AD, CD ⊥ SA, AD ∩ SA = A trong (SAD)
Suy ra CD ⊥ (SAD).
· Gọi K là hình chiếu của A trên SD hay AK ⊥ SD.
Do CD ⊥ (SAD), AK ⊂ (SAD) nên CD ⊥ AK.
Ta có: AK ⊥ SD, AK ⊥ CD, SD ⋂ CD = D trong (SCD)
Suy ra AK ⊥ (SCD).
Ta có: AB // CD (vì ABCD là hình chữ nhật) và CD ⊂ (SCD).
Suy ra AB // (SCD).
Như vậy: d(AB, SC) = d(AB, (SCD)) = d(A, (SCD)) = AK.
Ta có: SA ⊥ (ABC), AD ⊂ (ABC) nên SA ⊥ AD hay
Do ABCD là hình chữ nhật nên AD = BC = 4a.
Áp dụng hệ thức lượng trong tam giác SAD vuông tại A đường cao AK ta có:
Vậy
a) Từ điểm C đến mặt phẳng (SAB);
b) Giữa hai đường thẳng SB và CD;
c) Giữa hai đường thẳng BC và SA;
d) Từ điểm S đến mặt phẳng (ABCD).
Lời giải:
a) Gọi H là trung điểm của AB.
Vì tam giác SAB vuông cân tại S nên ta có: SH ⊥ AB và SA ⊥ SB.
Dễ thấy: AB = (SAB) ∩ (ABCD).
Mà (SAB) ⊥ (ABCD), SH ⊥ AB, SH ⊂ (SAB).
Suy ra SH ⊥ (ABCD).
Hơn nữa BC ⊂ (ABCD) nên ta có SH ⊥ BC.
Do ABCD là hình chữ nhật nên BC ⊥ AB.
Ta có: BC ⊥ SH, BC ⊥ AB, SH ∩ AB = H trong (SAB)
Suy ra BC ⊥ (SAB).
Như vậy: d(C, (SAB)) = BC = AD = 3a (vì ABCD là hình chữ nhật).
b) Do ABCD là hình chữ nhật nên CD // AB.
Mà AB ⊂ (SAB), suy ra CD // (SAB).
Như vậy: d(CD, AB) = d(CD, (SAB)) = d(C, (SAB)) = 3a.
c) Theo câu a ta có BC ⊥ (SAB) mà SB ⊂ (SAB) nên BC ⊥ SB.
Hơn nữa SA ⊥ SB.
Suy ra: SB là đoạn vuông góc chung của hai đường thẳng BC và SA.
Như vậy: d(BC, SA) = SB.
Áp dụng định lí Pythagore trong tam giác SAB vuông cân tại S có:
SA2 + SB2 = AB2 ⇒ 2SB2 = AB2 (Do SA = SB)
Vậy
d) Theo câu a ta có SH ⊥ (ABCD).
Như vậy: d(S, (ABCD)) = SH.
Xét tam giác SAB vuông tại S có đường trung tuyến SH nên ta có:
Vậy d(S, (ABCD)) = SH = a.
a) Từ điểm A đến mặt phẳng (SBD);
b) Giữa hai đường thẳng SO và CD;
c) Từ điểm O đến mặt phẳng (SCD);
d*) Giữa hai đường thẳng AB và SD.
Lời giải:
a) Ta có: SO ⊥ (ABCD), AO ⊂ (ABCD) nên SO ⊥ AO.
Do ABCD là hình vuông nên AC ⊥ BD hay AO ⊥ BD.
Ta có: AO ⊥ SO, AO ⊥ DB, SO ∩ BD = O trong (SBD)
Suy ra AO ⊥ (ABCD).
Như vây: d(A, (SBD)) = AO.
Ta có: ABCD là hình vuông cạnh a nên
Vì O là giao điểm của hai đường chéo AC và BD trong hình vuông ABCD nên O là trung điểm của AC và BD.
Vậy
b) Gọi M là hình chiếu của O trên CD hay OM ⊥ CD.
Do SO ⊥ (ABCD), OM ⊂ (ABCD) nên SO ⊥ OM.
Từ đó ta thấy OM là đoạn vuông góc chung của hai đường thẳng SO và CD.
Như vậy: d(SO, CD) = OM.
Xét hình vuông ABCD có: OM ⊥ CD, AD ⊥ CD nên OM // AD.
Xét tam giác ACD có: OM // AD, O là trung điểm của AD.
Suy ra OM là đường trung bình của tam giác ACD nên M là trung điểm của CD
Vậy
c) Gọi H là hình chiếu của O trên SM hay OH ⊥ SM.
Do SO ⊥ (ABCD), CD ⊂ (ABCD) nên SO ⊥ CD.
Ta có: CD ⊥ OM, CD ⊥ SO, SO ∩ OM = O trong (SOM)
Suy ra CD ⊥ (SOM).
Mà OH ⊂ (SOM) nên CD ⊥ OH.
Ta có: OH ⊥ SM, OH ⊥ CD, SM ∩ CD = M trong (SCD)
Suy ra OH ⊥ (SCD).
Như vậy: d(O, (SCD)) = OH.
Áp dụng định lí Pythagore trong tam giác SAO vuông tại O có:
SO2 = SA2 – AO2
Áp dụng hệ thức lượng trong tam giác SOM vuông tại O, đường cao OH ta có:
Vậy
d*) Ta có: AB // CD (do ABCD là hình vuông), CD ⊂ (SCD) nên AB // (SCD).
Do đó d(AB, SD) = d(AB, (SCD)) = d(A, (SCD)).
Gọi K là hình chiếu của A trên (SCD) hay AK ⊥ (SCD).
Khi đó d(A, (SCD)) = AK.
Ta có: H, K lần lượt là hình chiếu của O và A trên (SCD)
Mà C, O, A thẳng hàng nên C, H, K thẳng hàng.
Lại có: OH ⊥ (SCD), AK ⊥ (SCD).
Suy ra OH // AK.
Tam giác ACK có OH // AK, nên theo hệ quả định lí Thalès ta có:
(do O là trung điểm của AC)
Vậy
a) Từ điểm A đến mặt phẳng (BCC’B’);
b) Giữa hai mặt phẳng (ABB’A’) và (CDD’C’);
c*) Giữa hai đường thẳng BD và A’C.
Lời giải:
a) Gọi H là hình chiếu của A trên BC hay AH ⊥ BC.
Do ABCD.A’B’C’D là hình hộp nên AA’ // BB’.
Mà AA’ ⊥ (ABCD) nên BB’ ⊥ (ABCD).
Hơn nữa AH ⊂ (ABCD).
Từ đó ta có BB’ ⊥ AH.
Ta có: AH ⊥ BC, AH ⊥ BB’, BC ∩ BB’ = B trong (BCC’B’)
Suy ra AH ⊥ (BCC’B’).
Như vậy d(A, (BCC’B’)) = AH.
Xét tam giác ABC đều (do AB = BC = AC = a), AH là đường cao (do AH ⊥ BC)
Suy ra AH là đường trung tuyến nên ta có
Áp dụng định lí Pythagore trong tam giác ABH vuông tại H có:
AB2 = AH2 + BH2
Suy ra
Vậy
b) Do ABCD.A’B’C’D là hình hộp nên (ABB’A’) // (CDD’C’).
Như vậy: d((ABB’A’), (CDD’C’)) = d(A, (CDD’C’)).
Gọi I là hình chiếu của A trên CD hay AI ⊥ CD.
Do ABCD.A’B’C’D là hình hộp nên AA’ // DD’.
Mà AA’ ⊥ (ABCD) nên DD’ ⊥ (ABCD).
Hơn nữa AI ⊂ (ABCD).
Từ đó ta có DD’ ⊥ AI.
Ta có: AI ⊥ CD, AI ⊥ DD’, CD ∩ DD’ = D trong (CDD’C’)
Suy ra AI ⊥ (CDD’C’).
Khi đó: d(A, (CDD’C’)) = AI.
Xét tam giác ACD đều (do AC = AD = DC = a), AI là đường cao (do AI ⊥ CD)
Suy ra AI là đường trung tuyến nên ta có
Áp dụng định lí Pythagore trong tam giác ADI vuông tại I có:
AD2 = AI2 + DI2
Suy ra
Vậy
c) Gọi O là giao điểm của AC và BD.
Ta có ABCD là hình thoi nên AC ⊥ BD và
Do AA’ ⊥ (ABCD) và BD ⊂ (ABCD) nên AA’ ⊥ BD.
Ta có: BD ⊥ AA’, BD ⊥ AC, AA’ ∩ AC = A trong (AA’C)
Suy ra BD ⊥ (AA’C).
Gọi E là hình chiếu của O trên A’C hay OE ⊥ A’C.
Lại có: BD ⊥ (AA’C), OE ⊂ (AA’C).
Suy ra BD ⊥ OE.
Mà OE ⊥ A’C.
Từ đó ta có OE là đoạn vuông góc chung của hai đường thẳng BD và A’C.
Như vậy: d(BD, A’C) = OE.
Do AA’ ⊥ (ABCD) và AC ⊂ (ABCD) nên AA’ ⊥ AC.
Áp dụng định lí Pythagore trong tam giác A’AC vuông tại A ta có:
A'C2 = A'A2 + AC2
Suy ra
Xét tam giác CEO và tam giác CAA’ có:
chung
Suy ra
Vậy
Lý thuyết Khoảng cách
1. Khoảng cách từ một điểm đến một đường thẳng
Cho đường thẳng và điểm không thuộc . Gọi là hình chiếu của điểm trên đường thẳng . Độ dài đoạn thẳng MH gọi là khoảng cách từ điểm đến đường thẳng , kí hiệu .
Chú ý: Khi điểm thuộc đường thẳng thì
2. Khoảng cách từ một điểm đến một mặt phẳng
Cho mặt phẳng và điểm không thuộc mặt phẳng . Gọi là hình chiếu của trên mặt phẳng . Độ dài đoạn thẳng MH gọi là khoảng cách từ điểm đến mặt phẳng , kí hiệu .
Chú ý: Khi điểm thuộc mặt phẳng thì
3. Khoảng cách giữa hai đường thẳng song song
Khoảng cách giữa hai đường thẳng song song là khoảng cách từ một điểm bất kì thuộc đường thẳng này đến đường thẳng kia, kí hiệu .
Ví dụ: Trong hình dưới đây, ta có: với , và .
4. Khoảng cách giữa đường thẳng và mặt phẳng song song
Cho đường thẳng song song với mặt phẳng . Khoảng cách giữa đường thẳng và mặt phẳng là khoảng cách từ một điểm bất kì thuộc đường thẳng đến mặt phẳng , kí hiệu .
Ví dụ: Trong hình dưới đây, ta có: , trong đó và .
5. Khoảng cách giữa hai mặt phẳng song song
Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia, kí hiệu .
Ví dụ: Trong hình dưới đây, ta có: với và .
6. Khoảng cách giữa hai đưò̀ng thẳng chéo nhau
Cho hai đường thẳng a, b chéo nhau.
- Đường thẳng c vừa vuông góc, vừa cắt cả hai đường thẳng a và b được gọi là đường vuông góc chung của hai đường thẳng đó.
- Đoạn thẳng có hai đầu mút là giao điểm của đường thẳng c với hai đường thẳng a, b được gọi là đoạn vuông góc chung của hai đường thẳng đó.
- Độ dài đoạn thẳng vuông góc chung của hai đường thẳng a, b gọi là khoảng cách giữa hai đường thẳng đó, kí hiệu .
Ví dụ: Trong hình dưới đây, ta có: với HK là đoạn vuông góc chung của và .
Sơ đồ tư duy Khoảng cách
Xem thêm lời giải SBT Toán lớp 11 bộ sách Cánh diều hay, chi tiết khác:
Bài 2: Đường thẳng vuông góc với mặt phẳng
Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Bài 4: Hai mặt phẳng vuông góc
Bài 6: Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều