Sách bài tập Toán 11 Bài 1 (Cánh diều): Đường thẳng và mặt phằng trong không gian
Với giải sách bài tập Toán 11 Bài 1: Đường thẳng và mặt phằng trong không gian sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 1.
Giải SBT Toán 11 Bài 1: Đường thẳng và mặt phằng trong không gian
C. (SAB)
D. (SAD)
Lời giải:
Theo hình vẽ, ta thấy SC nằm trong mặt (SAC).
Do M∈SC nên M nằm trên mặt phẳng (SAC).
Đáp án đúng là B.
C. CD
D. AC
Lời giải:
Xét hai mặt phẳng (ABC) và (CDA), ta nhận thấy hai mặt phẳng này có hai điểm chung là A và C, do đó giao tuyến của hai mặt phẳng này là AC.
Đáp án đúng là D.
Do đồ vật trang trí có 4 mặt là các tam giác, nên nó có hình dạng một tứ diện.
Hình biểu diễn của nó như sau:
Do N là trung điểm của BC, nên 4 điểm B, N, C, D cùng nằm trong mặt phẳng.
Giả sử 4 điểm M, N, C, D cùng nằm trong một mặt phẳng.
Điều này có nghĩa là M∈(NCD).
Do bốn điểm B, N, C, D cùng nằm trong mặt phẳng, ta suy ra M∈(BCD).
Điểm M và điểm B cùng nằm trong mặt phẳng (BCD), nên BM⊂(BCD).
Mặt khác, do M là trung điểm của AB, nên A∈BM.
Suy ra A∈(BCD). Điều này là vô lí do ABCD là tứ diện nên bốn điểm A, B, C, D không cùng nằm trong một mặt phẳng.
Gọi I là giao điểm của hai đường thẳng a và b. Suy ra {I∈aI∈b
Vì a⊂(P) và b⊂(Q), ta suy ra {I∈(P)I∈(Q), tức là I thuộc giao tuyến của hai mặt phẳng (P) và (Q). Mà (P)∩(Q)=d, suy ra I∈d.
Bài toán được chứng minh.
a) Xác định giao tuyến của mặt phẳng (BEF) với các mặt phẳng (ABC), (ACD), (BCD).
b) Xác định giao điểm K của đường thẳng AD với mặt phẳng (BEF).
c) Xác định giao tuyến của hai mặt phẳng (BEF) và (ABD).
Lời giải:
a)
Giao tuyến của (BEF) và (ABC):
Ta có B∈(BEF)∩(ABC).
Mặt khác, ta có {E∈(BEF)E∈AC⊂(ABC)⇒E∈(BEF)∩(ABC).
Như vậy giao tuyển của (BEF) và (ABC) là đường thẳng BE.
Giao tuyến của (BEF) và (ACD):
Ta có {F∈(BEF)F∈CD⊂(ACD)⇒F∈(BEF)∩(ACD).
Mặt khác, {E∈(BEF)E∈AC⊂(ACD)⇒E∈(BEF)∩(ACD).
Như vậy giao tuyển của (BEF) và (ACD) là đường thẳng EF.
Giao tuyến của (BEF) và (BCD):
Ta có B∈(BEF)∩(BCD)
Mặt khác, {F∈(BEF)F∈CD⊂(BCD)⇒F∈(BEF)∩(BCD)
Như vậy giao tuyển của (BEF) và (BCD) là đường thẳng BF.
b) Trên mặt phẳng (ACD), lấy K là giao điểm của AD và EF.
Ta có {K}=AD∩EF, mà EF⊂(BEF).
Suy ra {K}=AD∩(BEF), tức K là giao điểm của AD và (BEF).
c) Ta có B∈(BEF)∩(ABD).
Theo câu b, ta có K∈AD∩(BEF)⇒{K∈ADK∈(BEF)
Mà AD∈(ABD) nên ta suy ra {K∈(ABD)K∈(BEF)⇒K∈(ABD)∩(BEF).
Vậy giao tuyến của hai mặt phẳng (BEF) và (ABD) là đường thẳng BK.
a) Xác định giao điểm của đường thẳng NP với mặt phẳng (SAB).
b) Xác định giao tuyến của mặt phẳng (MNP) với các mặt phẳng (SAB),(SAD),(SBC),(SCD).
Lời giải:
a) Xét mặt phẳng (ABCD), gọi E là giao điểm của AB và NP.
Ta có {E}=AB∩NP, mà NP⊂(MNP) nên {E}=(SAB)∩NP.
b)
Giao tuyến của (MNP) và (SAB):
Ta có {M∈SA⊂(SAB)M∈(MNP)⇒M∈(SAB)∩(MNP).
Mặt khác, theo câu a, ta có {E∈AB⊂(SAB)E∈NP⊂(MNP)⇒E∈(SAB)∩(MNP).
Từ đó, giao tuyến của hai mặt phẳng (SAB) và (MNP) là đường thẳng ME.
Giao tuyến của (MNP) và (SAD):
Trên mặt phẳng (ABCD), gọi F là giao điểm của AD và NP.
Vì F là giao điểm của AD và NP, ta suy ra {F∈ADF∈NP.
Do AD⊂(SAD), NP⊂(MNP) nên ta có {F∈(SAD)F∈(MNP)⇒F∈(SAD)∩(MNP).
Hơn nữa, ta cũng có {M∈SA⊂(SAD)M∈(MNP)⇒M∈(SAD)∩(MNP).
Vậy giao tuyến của hai mặt phẳng (SAD) và (MNP) là đường thẳng MF.
Giao tuyến của (MNP) và (SBC):
Ta có ME là giao tuyến của hai mặt phẳng (SAB) và (MNP)⇒ME⊂(SAB).
Trên mặt phẳng (SAB), gọi {K}=ME∩SB.
Suy ra {K∈ME⊂(MNP)K∈SB⊂(SBC)⇒K∈(MNP)∩(SBC).
Hơn nữa, ta có {N∈(MNP)N∈BC⊂(SBC)⇒N∈(MNP)∩(SBC).
Vậy giao tuyến của hai mặt phẳng (SBC) và (MNP) là đường thẳng NK.
Giao tuyến của (MNP) và (SCD):
Ta có MF là giao tuyến của hai mặt phẳng (SAD) và (MNP)⇒MF⊂(SAD).
Trên mặt phẳng (SAD), gọi {L}=MF∩SD.
Suy ra {L∈MF⊂(MNP)L∈SD⊂(SCD)⇒L∈(MNP)∩(SCD).
Hơn nữa, ta có {P∈(MNP)P∈CD⊂(SCD)⇒P∈(MNP)∩(SCD).
Vậy giao tuyến của hai mặt phẳng (SCD) và (MNP) là đường thẳng LP.
a) Xác định giao điểm I của đường thẳng MP với mặt phẳng (SBD).
b) Xác định giao điểm Q của đường thẳng SD với mặt phẳng (MNP).
Lời giải:
a) Trên mặt phẳng (ABCD), gọi {O}=AC∩BD.
Trên mặt phẳng (SAC), gọi {I}=MP∩SO.
Do SO⊂(SBD), ta suy ra {I}=MP∩(SBD).
Vậy I là giao điểm của MP và (SBD).
b) Trên mặt phẳng (SBD), gọi {Q}=NI∩SD.
Do NI⊂(MNP), ta suy ra {Q}=(MNP)∩SD.
Vậy Q là giao điểm của SD và (MNP).
a) Xác định các giao điểm M, N lần lượt của SA, SD với mặt phẳng (IBC).
b*) Chứng minh rằng các đường thẳng AD, BC và MN đồng quy.
Lời giải:
a)
Giao điểm M của SA và (IBC):
Ta nhận xét rằng I∈SO⊂(SAC)⇒CI⊂(SAC).
Trên mặt phẳng (SAC), gọi {M}=CI∩SA.
Do IC⊂(IBC), nên {M}=(IBC)∩SA.
Vậy M là giao điểm của (IBC) và SA.
Giao điểm N của SD và (IBC):
Ta nhận xét rằng I∈SO⊂(SBD)⇒BI⊂(SBD).
Trên mặt phẳng (SBD), gọi {N}=BI∩SD.
Do IB⊂(IBC), nên {N}=(IBC)∩SD.
Vậy N là giao điểm của (IBC) và SD.
b) Trên mặt phẳng (ABCD), gọi K là giao điểm của AD và BC.
Ta có {M∈SA⊂(SAD)M∈(IBC)⇒M∈(SAD)∩(IBC).
Mặt khác, {N∈SD⊂(SAD)N∈(IBC)⇒N∈(SAD)∩(IBC).
Vậy giao tuyến của (SAD) và (IBC) là đường thẳng MN.
Do AD∈(SAD), BC∈(IBC), {K}=AD∩BC, ta suy ra K nằm trên giao tuyến của (SAD) và (IBC), tức là K∈MN.
Vậy ba đường thẳng AD, BC, MN cắt nhau tại K.
Lý thuyết Đường thẳng và mặt phẳng trong không gian
I. Khái niệm mở đầu
1. Mặt phẳng
Hình ảnh mặt phẳng trong thực tiễn
- Biểu diễn một mặt phẳng: Người ta thường biểu diễn mặt phẳng bằng một hình bình hành.
- Để kí hiệu mặt phẳng ta dùng chữ cái in hoa đặt trong dấu ngoặc ( ).
2. Điểm thuộc mặt phẳng
- Điểm A thuộc mặt phẳng (P), ta kí hiệu A∈(P)
- Điểm A không thuộc mặt phẳng (P) ta kí hiệu A∉(P).
3. Hình biểu diễn của một hình trong không gian
a, Khái niệm
Hình được vẽ trong mặt phẳng để giúp ta hình dung được về một hình trong không gian gọi là hình biểu diễn của hình không gian đó.
b, Quy tắc vẽ hình biểu diễn của một hình trong không gian
- Đường thẳng được biểu diễn bởi đường thẳng, đoạn thẳng được biểu diễn bởi đoạn thẳng.
- Hai đường thẳng song song (hoặc cắt nhau) được biểu diễn bởi 2 đường thẳng song song (hoặc cắt nhau).
- Hình biểu diễn giữ nguyên quan hệ liên thuộc giữa điểm và đường thẳng.
- Dùng nét liền để biểu diễn cho đường nhìn thấy và nét đứt đoạn để biểu diễn cho đường bị che khuất.
II. Các tính chất thừa nhận của hình học không gian
- Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước.
- Có một và chỉ một mặt phẳng đi qua 3 điểm không thẳng hàng.
- Nếu một đường thẳng đi qua hai điểm phân biệt của một mặt phẳng thì mọi điểm của đường thẳng đều nằm trong mặt phẳng đó.
- Nếu mọi điểm của đường thẳng d đều thuộc mặt phẳng (P) thì ta nói d nằm trong (P) hoặc (P) chứa d. Kí hiệu d⊂(P) hoặc (P)⊃d.
- Tồn tại 4 điểm không cùng thuộc một mặt phẳng.
- Nếu hai mặt phẳng phân biệt có điểm chung thì các điểm chung của hai mặt phẳng là một đường thẳng đi qua điểm chung đó. Đường thẳng đó được gọi là giao tuyến, kí hiệu d=(P)∩(Q).
- Trên mỗi mặt phẳng, tất cả các kết quả đã biết trong hình học phẳng đều đúng.
III. Một số cách xác định mặt phẳng
Cho điểm A∉d. Khi đó qua điểm A và đường thẳng d có một và chỉ một mặt phẳng. Kí hiệu mp(A,d) hoặc (A,d).
Cho hai đường thẳng a và b cắt nhau. Khi đó, qua a và b có một và chỉ một mặt phẳng, kí hiệu mp(a,b).
IV. Hình chóp và hình tứ diện
1. Hình chóp
- Trong mặt phẳng (P), cho đa giác A1A2...An (n≥3) . Lấy điểm S nằm ngoài mặt phẳng (P). Nối S với các đỉnh A1,A2,...,Anđể được n tam giác SA1A2,SA2A3,...,SAnA1. Hình gồm đa giác A1A2...An và n tam giác SA1A2,SA2A3,...,SAnA1 được gọi là hình chóp và kí hiệu là S.A1A2...An.
- Trong hình chóp S.A1A2...An:
+ Điểm S được gọi là đỉnh.
+ Đa giácA1A2...An được gọi là mặt đáy.
+ Các tam giác SA1A2,SA2A3,...,SAnA1được gọi là các mặt bên
+ Các cạnh SA1,SA2,...,SAnđược gọi là cạnh bên; các cạnhA1A2,A2A3...,AnA1 được gọi là các cạnh đáy.
Nếu đáy của hình chóp là một tam giác, tứ giác, ngũ giác,…thì hình chóp tương ứng gọi là hình chóp tam giác, hình chóp tứ giác, hình chóp ngũ giác,…
2. Hình tứ diện
Cho 4 điểm A, B, C, D không đồng phẳng. Hình gồm 4 tam giác ABC, ABD, ACD và BCD được gọi là hình tứ diện, kí hiệu là ABCD.
Trong đó, các điểm A, B, C, D được gọi các đỉnh của tứ diện, các đoạn thẳng AB, BC, CD, DA, BD,AC được gọi là cạnh của tứ diện; các tam giác ABC, ABD, ACD và BCD gọi là mặt của tứ diện.
Hai cạnh không có đỉnh chung được gọi là hai cạnh đối diện, đỉnh không nằm trên một mặt gọi là đỉnh đối diện với mặt đó.

Xem thêm Lời giải bài tập SBT Toán 11 sách Cánh diều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều