Sách bài tập Toán 11 Bài 4 (Cánh diều): Hai mặt phẳng song song
Với giải sách bài tập Toán 11 Bài 4: Hai mặt phẳng song song sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 4.
Giải SBT Toán 11 Bài 4: Hai mặt phẳng song song
C. 2.
D. Vô số.
Lời giải:
Đáp án đúng là: B
Theo hệ quả của định lí về tính chất của hai mặt phẳng song song: Nếu đường thẳng a song song với mặt phẳng (P) thì có duy nhất một mặt phẳng chứa a và song song với (P).
A. Mọi đường thẳng nằm trong (P) đều song song với mọi đường thẳng nằm trong (Q).
B. (P) song song với mọi đường thẳng nằm trong (Q).
C. Nếu mặt phẳng (R) song song với mặt phẳng (P) thì mặt phẳng (R) song song với mặt phẳng (Q).
D. Nếu đường thẳng a song song với mặt phẳng (Q) thì đường thẳng a song song với mặt phẳng (P).
Lời giải:
Đáp án đúng là: B
Xét từng đáp án:
+ Đáp án A sai vì chúng có thể chéo nhau.
+ Đáp án B đúng.
+ Đáp án C sai vì mặt phẳng (R) có thể trùng với mặt phẳng (Q).
+ Đáp án D sai vì đường thẳng a có thể nằm trong mặt phẳng (P).
B. (SBC) // (MPD).
C. (SBN) // (PMD).
D. (SDN) // (MAP).
Lời giải:
+ Ta có, P ∈ SA nên mặt phẳng (DAP) chính là mặt phẳng (SAD).
Mà hai mặt phẳng (SAD) và (SBN) có điểm chung là S nên chúng không thể song song.
Vậy hai mặt phẳng (SBN) và (DAP) không song song với nhau.
Do đó, đáp án A sai.
+ Trong mặt phẳng (ABCD), hai đường thẳng MD và BC cắt nhau.
Vậy hai mặt phẳng (SBC) và (MPD) không thể song song.
Do đó, đáp án B sai.
+ Mặt phẳng (MAP) chính là mặt phẳng (SAB).
Hai mặt phẳng (SAB) và (SDN) có điểm chung là S.
Vậy hai mặt phẳng (MAP) và (SAB) không thể song song.
Do đó, đáp án D sai. Vậy đáp án C đúng. Ta chứng minh như sau:
+ Vì M, N lần lượt là trung điểm của AB, CD và AB = CD, AB // CD (do ABCD là hình bình hành) nên BM // ND và BM // ND. Do đó, BMDN là hình bình hành.
Suy ra MD // BN. Mà BN ⊂ (SBN) nên MD // (SBN).
Lại có MP là đường trung bình của tam giác SAB nên MP // SB.
Mà SB ⊂ (SBN) nên MP // (SBN).
Vì MD và MP cắt nhau trong mặt phẳng (MPD) nên (MPD) // (SBN).
C. (ABC) // (DEF).
D. EC // (ABD).
Lời giải:
Đáp án đúng là: A
+ Ta có AF // BE (ABEF là hình bình hành), mà BE ⊂ (BCE) nên AF // (BCE).
Lại có AD // BC (ABCD là hình bình hành), mà BC ⊂ (BCE) nên AD // (BCE).
Mà AF và AD cắt nhau trong mặt phẳng (ADF) nên (ADF) // (BCE). Vậy đáp án A đúng.
+ Vì AD ∩ (BEF) = A nên đáp án B sai.
+ Vì (ABC) ∩ (DEF) = CD nên đáp án C sai.
+ Vì EC ∩ (ABD) = C nên đáp án D sai.
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là: D
Theo định lí Thalès trong không gian, ta có: . (đáp án A đúng)
Suy ra . (đáp án B đúng)
Từ suy ra. (đáp án C đúng)
Vậy đáp án D sai.
Lời giải:
Vì AA' // BB' (Ax // By) và AA' = BB nên AA'B'B là hình bình hành.
Suy ra A'B' // AB. Mà AB ⊂ (ABC) nên A'B' // (ABC).
Tương tự ta chứng minh được B'C' // (ABC).
Mà A'B' và B'C' là hai đường thẳng cắt nhau trong mặt phẳng (A'B'C').
Từ đó, suy ra (ABC) // (A'B'C').
Gọi E là trung điểm của AD và I là giao điểm của NP và EC.
Ta có nên NP // AD.
Do AD // BC (ABCD là hình thang có AD là đáy) nên NP // BC.
Mà BC ⊂ (SBC). Suy ra NP // (SBC). (1)
Vì NP // AD nên ta có .
Do M là trọng tâm của tam giác SAD và E trung điểm của đoạn AD nên M ∈ SE và .
Như vậy nên MI // SC.
Mà SC ⊂ (SBC). Suy ra MI // (SBC). (2)
Lại có MI và NP là hai đường thẳng cắt nhau tại I trong mặt phẳng (MNP). (3)
Từ (1), (2) và (3) suy ra (MNP) // (SBC).
a) Chứng minh rằng (MNN') // (CDE).
Lời giải:
a) Ta có MM' // AB và NN' // AB (theo đề bài) nên MM' // NN'.
Suy ra M, M', N', N cùng thuộc một mặt phẳng. (1)
Ta có CD // AB (do ABCD là hình bình hành) và EF // AB (do ABEF là hình bình hành) nên CD // EF, suy ra C, D, F, E cùng thuộc một mặt phẳng.
Do AB // CD nên MM' // CD, mà CD ⊂ (CDE), suy ra MM' // (CDE). (2)
Theo định lí Thalés trong tam giác ACD, ta có (MM' // CD).
Tương tự, trong tam giác AFB có (NN' // AB).
Mà (theo đề bài). Do đó, , từ đó suy ra M'N' // DF.
Mà DF ⊂ (CDE) (do C, D, F, E cùng thuộc một mặt phẳng) nên M'N' // (CDE). (3)
Từ (2) và (3) suy ra (MM'N') // (CDE). (4)
Từ (1) và (4) suy ra (MNN') // (CDE).
b) Ta có AF // BE và AD // BC, từ đó suy ra (ADF) // (BCE).
Khi đó đường thẳng AC cắt ba mặt phẳng song song (ADF), (P), (BCE) lần lượt tại A, M, C; đường thẳng FE cũng cắt ba mặt phẳng trên theo thứ tự tại F, I, E.
Áp dụng định lí Thalés trong không gian, ta có: .
Suy ra . Mà nên .
Lý thuyết Hai mặt phẳng song song
I. Hai mặt phẳng song song
Hai mặt và được gọi là song song với nhau nếu chúng không có điểm chung. Kí hiệu// hay //.
*Nhận xét: Hai mặt và có diểm chung. Khi đó, chúng cắt nhau theo một đường thẳng.
II. Điều kiện và tính chất
- Nếu mặt phẳng chứa hai đường thẳng cắt nhau a,b và a,b cùng song song với mặt phẳng phẳng thì song song với
- Qua một điểm nằm ngoài một mặt phẳng cho trước có một và chỉ một mặt phẳng song song với mặt phẳng đã cho.
* Hệ quả:
- Nếu đường thẳng a song song với mặt phẳng thì có duy nhất một mặt phẳng chứa a và song song với mặt phẳng
- Nếu 2 mặt phẳng phân biệt cùng song song với mặt phẳng thứ 3 thì song song với nhau.
- Cho hai mặt phẳng và song song. Nếu mặt phẳng cắt mặt phẳng thì cũng cắt mặt phẳng và hai giao tuyến song song với nhau.
III. Định lí Thalès
Nếu a, b là hai cát tuyến bất kì cắt 3 mặt phẳng song song , và lần lượt tại các điểm A, B, C và A’, B’, C’ thì
Xem thêm Lời giải bài tập SBT Toán 11 sách Cánh diều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Cánh diều (hay nhất)
- Văn mẫu lớp 11 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 11 – Cánh diều
- Tác giả tác phẩm Ngữ văn 11 - Cánh diều
- Giải SBT Ngữ văn 11 – Cánh diều
- Bố cục tác phẩm Ngữ văn 11 – Cánh diều
- Giải Chuyên đề học tập Ngữ văn 11 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Cánh diều
- Soạn văn 11 Cánh diều (ngắn nhất)
- Giải sgk Tiếng Anh 11 – ilearn Smart World
- Giải sbt Tiếng Anh 11 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 11 ilearn Smart World đầy đủ nhất
- Giải sgk Vật lí 11 – Cánh diều
- Lý thuyết Vật lí 11 – Cánh diều
- Giải sbt Vật lí 11 – Cánh diều
- Giải Chuyên đề học tập Vật lí 11 – Cánh diều
- Giải sgk Hóa học 11 – Cánh diều
- Giải Chuyên đề học tập Hóa học 11 – Cánh diều
- Lý thuyết Hóa 11 - Cánh diều
- Giải sbt Hóa học 11 – Cánh diều
- Giải sgk Sinh học 11 – Cánh diều
- Lý thuyết Sinh học 11 – Cánh diều
- Giải Chuyên đề học tập Sinh học 11 – Cánh diều
- Giải sbt Sinh học 11 – Cánh diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Cánh diều
- Lý thuyết Kinh tế pháp luật 11 – Cánh diều
- Giải sbt Kinh tế pháp luật 11 – Cánh diều
- Giải sgk Lịch sử 11 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 11 – Cánh diều
- Lý thuyết Lịch sử 11 - Cánh diều
- Giải sbt Lịch sử 11 – Cánh diều
- Giải sgk Địa lí 11 – Cánh diều
- Giải Chuyên đề học tập Địa lí 11 – Cánh diều
- Lý thuyết Địa lí 11 - Cánh diều
- Giải sbt Địa lí 11 – Cánh diều
- Giải sgk Công nghệ 11 – Cánh diều
- Lý thuyết Công nghệ 11 - Cánh diều
- Giải sbt Công nghệ 11 – Cánh diều
- Giải sgk Tin học 11 – Cánh diều
- Giải Chuyên đề học tập Tin học 11 – Cánh diều
- Lý thuyết Tin học 11 - Cánh diều
- Giải sbt Tin học 11 – Cánh diều
- Giải sgk Giáo dục quốc phòng an ninh 11 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 11 – Cánh diều
- Giải sbt Giáo dục quốc phòng 11 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 11 – Cánh diều