Trong mặt phẳng (P) cho tam giác ABC. Qua A, B, C lần lượt vẽ các tia Ax, By, Cz

Lời giải Bài 33 trang 108 SBT Toán 11 Tập 1 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 215 18/09/2023


Giải SBT Toán 11 Bài 4: Hai mặt phẳng song song

Bài 33 trang 108 SBT Toán 11Trong mặt phẳng (P) cho tam giác ABC. Qua A, B, C lần lượt vẽ các tia Ax, By, Cz đôi một song song với nhau và không nằm trong mặt phẳng (P). Trên các tia Ax, By, Cz lần lượt lấy các điểm A', B', C' sao cho AA' = BB' = CC'. Chứng minh rằng (ABC) // (A'B'C').

Lời giải:

Trong mặt phẳng (P) cho tam giác ABC. Qua A, B, C lần lượt vẽ các tia Ax, By, Cz đôi một song song với nhau và không nằm trong mặt phẳng (P). Trên các tia Ax, By, Cz lần lượt lấy các điểm A', B', C' sao cho AA' = BB' = CC'. Chứng minh rằng (ABC) // (A'B'C'). (ảnh 1)

Vì AA' // BB' (Ax // By) và AA' = BB nên AA'B'B là hình bình hành.

Suy ra A'B' // AB. Mà AB  (ABC) nên A'B' // (ABC).

Tương tự ta chứng minh được B'C' // (ABC).

Mà A'B' và B'C' là hai đường thẳng cắt nhau trong mặt phẳng (A'B'C').

Từ đó, suy ra (ABC) // (A'B'C').

1 215 18/09/2023


Xem thêm các chương trình khác: