Sách bài tập Toán 11 Bài 2 (Cánh diều): Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Với giải sách bài tập Toán 11 Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 2.

1 792 29/10/2024


Giải SBT Toán 11 Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Bài 6 trang 16, 17 SBT Toán 11 Tập 2: Một hộp có 20 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 19, 20; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một chiếc trong hộp. Xét các biến cố:

A: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 2”;

B: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 5”;

C: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 2 hoặc chia hết cho 5”;

D: “Số xuất hiện trên thẻ được rút ra là số vừa chia hết cho 2 vừa chia hết cho 5”.

a) Biến cố C là biến cố hợp của:

A. Biến cố B và biến cố D;

B. Biến cố A và biến cố D;

C. Biến cố A và biến cố B;

D. Biến cố A và biến cố D hoặc biến cố B và biến cố D.

b) Biến cố D là biến cố giao của:

A. Biến cố B và biến cố C;

B. Biến cố A và biến cố B;

C. Biến cố A và biến cố C;

D. Biến cố A và biến cố C hoặc biến cố B và biến cố C.

Lời giải:

a) Đáp án đúng là: C

Biến cố hợp của hai biến cố A và B là “Số xuất hiện trên thẻ được rút ra là số chia hết cho 2 hoặc chia hết cho 5”, hay biến cố C là biến cố hợp của biến cố A và biến cố B.

b) Đáp án đúng là: B

Biến cố giao của hai biến cố A và B là “Số xuất hiện trên thẻ được rút ra là số vừa chia hết cho 2 vừa chia hết cho 5”, hay biến cố D là biến cố giao của biến cố A và biến cố B.

Bài 7 trang 17 SBT Toán 11 Tập 2: Một lớp học có 35 học sinh gồm 20 nam và 15 nữ. Chọn ngẫu nhiên ra 2 học sinh để phân công trực nhật.

a) Xét các biến cố sau:

A: “ Hai học sinh được chọn đều là học sinh nam”;

B: “ Hai học sinh được chọn đều là học sinh nữ”;

C: “ Hai học sinh được chọn có cùng giới tính”.

Trong ba biến cố A, B, C, biến cố nào là biến cố hợp của hai biến cố còn lại?

b) Xét các biến cố sau:

D: “Hai học sinh được chọn gồm một bạn nam và một bạn nữ”;

E: “Trong hai học sinh được chọn, có ít nhất một học sinh nữ”;

G: “Trong hai học sinh được chọn, có ít nhất một học sinh nam”.

Trong ba biến cố D, E, G biến cố nào là biến cố giao của hai biến cố còn lại?

Lời giải:

a) Biến cố hợp của hai biến cố A và B là “Hai học sinh được chọn có cùng giới tính”, hay biến cố C là biến cố hợp của biến cố A và biến cố B.

b) Biến cố giao của hai biến cố E và G là “Hai học sinh được chọn gồm một bạn nam và một bạn nữ”, hay biến cố D là biến cố giao của biến cố E và biến cố G.

Bài 8 trang 17 SBT Toán 11 Tập 2: Một ban văn nghệ có 20 người trong đó có 8 nam và 12 nữ. Chọn ngẫu nhiên ra 5 người để tập múa. Xét các biến cố sau:

M: “Trong 5 người được chọn, số nam lớn hơn 3”;

N: “Trong 5 người được chọn, số nữ nhỏ hơn 3”;

P: “Trong 5 người được chọn, số nam không vượt quá 3”.

Trong ba biến cố M, N, P, hai biến cố nào là xung khắc?

Lời giải:

Ta thấy, nếu biến cố M: “Trong 5 người được chọn, số nam lớn hơn 3” xảy ra thì biến cố P: “Trong 5 người được chọn, số nam không vượt quá 3” không xảy ra và ngược lại, nếu biến cố P xảy ra thì biến cố M không xảy ra.

Hay M ∩ P = ∅ nên biến cố M và biến cố P là xung khắc.

Bài 9 trang 18 SBT Toán 11 Tập 2: Gieo một xúc xắc cân đối và đồng chất ba lần liên tiếp. Xét các biến cố sau:

A: “Số chấm xuất hiện ở lần gieo thứ nhất lớn hơn 3”;

B: “Số chấm xuất hiện ở lần gieo thứ hai nhỏ hơn 3”;

C: “Số chấm xuất hiện ở lần gieo thứ ba lớn hơn 3”;

D: “Số chấm xuất hiện ở lần gieo thứ nhất nhỏ hơn 3”.

Trong các biến cố trên, tìm:

a) Một cặp biến cố xung khắc;

b) Ba cặp biến cố độc lập.

Lời giải:

a) Ta thấy: Nếu biến cố A: “Số chấm xuất hiện ở lần gieo thứ nhất lớn hơn 3” xảy ra thì biến cố D: “Số chấm xuất hiện ở lần gieo thứ nhất nhỏ hơn 3” không xảy ra và ngược lại, nếu biến cố D xảy ra thì biến cố A không xảy ra.

Hay A ∩ D = ∅ nên biến cố A và biến cố D là xung khắc.

b) Vì các lần gieo là độc lập, nên việc xảy ra của biến cố A: “Số chấm xuất hiện ở lần gieo thứ nhất lớn hơn 3” không làm ảnh hưởng đến xác suất xảy ra của biến cố B: “Số chấm xuất hiện ở lần gieo thứ hai nhỏ hơn 3” nên biến cố A và biến cố B là hai biến cố độc lập.

Tương tự ta có hai cặp biến cố độc lập khác là: A và C, B và C.

Bài 10 trang 18 SBT Toán 11 Tập 2: Tung một đồng xu cân đối và đồng chất hai lần liên tiếp.

a) Viết các kết quả thuận lợi của không gian mẫu Ω và hai biến cố A: “Có ít nhất một lần xuất hiện mặt sấp”, B: “ Có ít nhất một lần xuất hiện mặt ngửa”.

b) Viết các kết quả thuận lợi của mỗi biến cố A ∪ B, A ∩ B.

c) Tính P(A), P(B), P(A ∪ B), P(A ∩ B). Cho biết A và B có là hai biến cố xung khắc không; A và B có là hai biến cố độc lập không.

Lời giải:

a) Kí hiệu: S là mặt sấp, N là mặt ngửa.

Gọi Ω là không gian mẫu của phép thử “Tung một đồng xu cân đối và đồng chất liên tiếp hai lần”. Khi đó Ω = {SS; SN; NS; NN}.

Tập hợp các kết quả thuận lợi cho biến cố A là: A = {SS; SN; NS};

Tập hợp các kết quả thuận lợi cho biến cố B là: B = {NS; SN; NN}.

b) Các kết quả thuận lợi của biến cố A ∪ B là {SS; SN; NS; NN};

Các kết quả thuận lợi của biến cố A ∩ B là {SN; NS}.

c) Số phần tử của không gian mẫu là: n(Ω) = 4;

Ta có n(A) = 3, n(B) = 3, n(A ∪ B) = 4, n(A ∩ B) = 2.

Suy ra:

PA=nAnΩ=34;PB=nBnΩ=34;

PAB=nABnΩ=44=1;

PAB=nABnΩ=24=12.

Vì A ∩ B ≠ ∅ (do PAB=12) nên biến cố A và biến cố B không là hai biến cố xung khắc.

Vì P(A ∩ B) ≠ P(A) . P(B) (do 123434) nên biến cố A và biến cố B không là hai biến cố độc lập.

Bài 11 trang 18 SBT Toán 11 Tập 2: Xét các biến cố A, B liên quan đến cùng một phép thử thỏa mãn P(A) = 0,4; P(B) = 0,5; P(A ∪ B) = 0,6. Hai biến cố A và B có xung khắc không? Vì sao?

Lời giải:

Ta có: P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

Nên P(A ∩ B) = P(A) + P(B) – P(A ∪ B) = 0,4 + 0,5 – 0,6 = 0,3.

Suy ra A ∩ B ≠ ∅. Vậy A và B không là hai biến cố xung khắc.

Bài 12 trang 18 SBT Toán 11 Tập 2: Xét các biến cố A, B liên quan đến cùng một phép thử thỏa mãn P(A) = 0,3; P(B) = 0,4; P(A ∩ B) = 0,1. Hai biến cố A và B có độc lập không? Vì sao?

Lời giải:

Ta có: 0,1 ≠ 0,3 . 0,4 hay P(A ∩ B) ≠ P(A) . P(B)

Vậy A và B không là hai biến cố độc lập.

Bài 13 trang 18 SBT Toán 11 Tập 2: Gieo một xúc xắc cân đối và đồng chất hai lần liên tiếp.

a) Không gian mẫu Ω có bao nhiêu phần tử?

b) Xét các biến cố:

A: “Số chấm xuất hiện ở lần gieo thứ nhất là 2”;

B: “Số chấm xuất hiện ở lần gieo thứ hai là 3”.

Tính xác suất của các biến cố A, B, A ∩ B.

Lời giải:

a) Số phần tử của không gian mẫu Ω là: n(Ω) = 6.6 = 36.

b) Xét biến cố A: “Số chấm xuất hiện ở lần gieo thứ nhất là 2”.

Lần gieo thứ nhất, số chấm xuất hiện là 2, có 1 cách.

Lần gieo thứ hai, số chấm xuất hiện có thể là 1; 2; 3; 4; 5; 6. Do đó có 6 cách.

Vậy số kết quả thuận lợi cho biến cố A là: n(A) = 1.6 = 6.

Suy ra: PA=636=16.

Tương tự, số kết quả thuận lợi cho biến cố B là: n(B) = 6.1 = 6.

Suy ra: PB=636=16.

Ta thấy: Vì hai lần gieo liên tiếp là độc lập nên xác suất của biến cố B khi biến cố A xảy ra là 16 xác suất của biến cố B khi biến cố A không xảy ra cũng bằng 16

Do đó việc xảy ra hay không xảy ra của biến cố A không làm ảnh hướng đến xác suất của biến cố B. Tương tự, việc xảy ra hay không xảy ra của biến cố B không làm ảnh hướng đến xác suất của biến cố A. Vì vậy, hai biến cố A và B là độc lập.

Vậy PAB=PAPB=1616=136.

Bài 14 trang 18 SBT Toán 11 Tập 2: Cho hai biến cố độc lập A và B cùng liên quan đến một phép thử thỏa mãn P(A) = 0,2 và P(B) = 0,3.

Tính xác suất của các biến cố: A¯,   B¯,  AB,  A¯B,  AB¯A¯B¯.

Lời giải:

Ta có:

PA¯=1PA=10,2=0,8;

PB¯=1PB=10,3=0,7.

Vì A và B là hai biến cố độc lập nên các cặp biến cố sau cũng độc lập: A¯ và B, A và B,¯ A¯B¯ Suy ra:

PAB=PAPB=0,20,3=0,06;

PA¯B=PA¯PB=0,80,3=0,24;

PAB¯=PAPB¯=0,20,7=0,14;

PA¯B¯=PA¯PB¯=0,80,7=0,56.

Bài 15 trang 18, 19 SBT Toán 11 Tập 2: Hai bệnh nhân cùng nhiễm một loại virus. Xác suất biến chứng nặng của bệnh nhân thứ nhất và bệnh nhân thứ hai lần lượt là 0,2 và 0,25; khả năng bị biến chứng nặng của hai bệnh nhân là độc lập. Tính xác suất của các biến cố:

a) M: “Bệnh nhân thứ nhất và bệnh nhân thứ hai đều bị biến chứng nặng”;

b) N: “Bệnh nhân thứ nhất không bị biến chứng nặng và bệnh nhân thứ hai bị biến chứng nặng”;

c) Q: “Bệnh nhân thứ nhất bị biến chứng nặng và bệnh nhân thứ hai không bị biến chứng nặng”;

d) R: “Bệnh nhân thứ nhất và bệnh nhân thứ hai đều không bị biến chứng nặng”;

e) S: “Có ít nhất một trong hai bệnh nhân bị biến chứng nặng”.

Lời giải:

Xét các biến cố A: “Bệnh nhân thứ nhất bị biến chứng nặng” và B: “Bệnh nhân thứ hai bị biến chứng nặng”. Khi đó P(A) = 0,2 và P(B) = 0,25.

Biến cố đối của biến cố A là A¯: “Bệnh nhân thứ nhất không bị biến chứng nặng”.

Suy ra PA¯=1PA=10,2=0,8.

Biến cố đối của biến cố B là B¯: “Bệnh nhân thứ hai không bị biến chứng nặng”.

Suy ra PB¯=1PB=10,25=0,75.

Từ giả thiết, ta có hai biến A và B là hai biến cố độc lập nên A¯ và B; A và B¯A¯B¯ là các cặp biến cố độc lập.

a) Ta có M = A ∩ B nên P(M) = P(A ∩ B) = P(A) . P(B) = 0,2 . 0,25 = 0,05.

b) Do A¯ B là hai biến cố độc lập và N=A¯B

Nên PN=PA¯B=PA¯PB=0,80,25=0,2.

c) Do A, B¯là hai biến cố độc lập và Q=AB¯

Nên PQ=PAB¯=PAPB¯=0,20,75=0,15.

d) Do A¯,B¯ là hai biến cố độc lập và R=A¯B¯

Nên PR=PA¯B¯=PA¯PB¯=0,80,75=0,6.

e) Ta thấy S là biến cố đối của biến cố R, nên P(S) = 1 – P(R) = 1 – 0,6 = 0,4.

Bài 16 trang 19 SBT Toán 11 Tập 2: Một lớp học có 40 học sinh, trong đó có 25 học sinh thích chơi cầu lông, 20 học sinh thích chơi bóng bàn, 12 học sinh thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên 1 học sinh. Tính xác suất của các biến cố:

a) A: “Học sinh được chọn thích chơi cầu lông”;

b) B: “Học sinh được chọn thích chơi bóng bàn”;

c) C: “Học sinh được chọn vừa thích chơi cầu lông vừa thích chơi bóng bàn”;

d) D: “Học sinh được chọn thích chơi ít nhất một trong hai môn thể thao là câu lông hoặc bóng bàn”.

Lời giải:

Mỗi cách chọn 1 học sinh từ 40 học sinh trong lớp cho ta một tổ hợp chập 1 của 40 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 1 của 40 phần tử vànΩ=C401=40.

a) Xét biến cố A: “Học sinh được chọn thích chơi cầu lông”.

Số các kết quả thuận lợi cho biến cố A là nA=C251=25.

Xác suất của biến cố A là: PA=nAnΩ=2540=58.

b) Số các kết quả thuận lợi cho biến cố B là nB=C201=20.

Xác suất của biến cố B là: PB=nBnΩ=2040=12.

c) Số các kết quả thuận lợi cho biến cố C là nC=C121=12.

Xác suất của biến cố C là: PC=nCnΩ=1240=310.

d) Ta thấy D = A ∪ B và C = A ∩ B nên ta có:

PD=PAB=PA+PBPAB

=PA+PBPC=58+12310=3340.

Bài 17 trang 19 SBT Toán 11 Tập 2: Một nồi cơm điện gồm hai van bảo hiểm hoạt động độc lập. Xác suất hoạt động tốt của van I và van II lần lượt là 0,8 và 0,6. Nồi cơm điện hoạt động an toàn khi có ít nhất một van hoạt động tốt. Tính xác suất nồi cơm điện hoạt động an toàn.

Lời giải:

Xét các biến cố A: “Van I hoạt động tốt” và B: “Van II hoạt động tốt”.

Từ giả thiết, suy ra A, B là hai biến cố độc lập và P(A) = 0,8; P(B) = 0,6.

Suy ra: P(A ∩ B) = P(A) . P(B) = 0,8 . 0,6 = 0,48.

Xét biến cố C: “Nồi cơm điện hoạt động an toàn”.

Theo đề bài, nồi cơm điện hoạt động an toàn khi có ít nhất một van hoạt động tốt hay C = A ∪ B.

Xác suất nồi cơm điện hoạt động an toàn là:

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) = 0,8 + 0,6 – 0,48 = 0,92.

Bài 18 trang 19 SBT Toán 11 Tập 2: Hai xạ thủ A và B cùng lúc bắn vào một mục tiêu một cách độc lập. Xác suất bắn trúng mục tiêu đó của hai xạ thủ A và B lần lượt là 0,6 và 0,65. Mục tiêu bị hạ nếu có ít nhất một xạ thủ bắn trúng mục tiêu. Tính xác suất của biến cố D: “Mục tiêu bị hạ bởi hai xạ thủ”.

Lời giải:

Xét các biến cố M: “Xạ thủ A bắn trúng mục tiêu” và N: “Xạ thủ B bắn trúng mục tiêu”.

Từ giả thiết, ta có M, N là hai biến cố độc lập và P(M) = 0,6; P(N) = 0,65.

Xét các biến cố đối:

A¯: “Xạ thủ A không bắn trúng mục tiêu”;

B¯: “Xạ thủ A không bắn trúng mục tiêu”;

D: “Mục tiêu không bị hạ”.

Khi đó PA¯=1PA=10,6=0,4;

PB¯=1PB=10,65=0,35;

D¯=A¯B¯A¯,  B¯ là hai biến cố độc lập

Do đó PD¯=PA¯B¯=PA¯PB¯=0,40,35=0,14.

Suy ra: PD=1PD¯=10,14=0,86.

Bài 19 trang 19 SBT Toán 11 Tập 2: Chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương đầu tiên. Tính xác suất của các biến cố:

a) A: “Hai số được chọn là số chẵn”;

b) B: “Hai số được chọn là số lẻ”;

c) C: “Tổng của hai số được chọn là số chẵn”.

Lời giải:

Mỗi cách chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương cho ta một tổ hợp chập 2 của 21 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 2 của 21 phần tử và nΩ=C212=210.

a) Ta thấy trong 21 số nguyên dương đầu tiên có 10 số chẵn là: 2; 4; …; 20.

Suy ra số các kết quả thuận lợi cho biến cố A là nA=C102=45.

Xác suất của biến cố A là: PA=nAnΩ=45210=314.

b) Ta thấy trong 21 số nguyên dương đầu tiên có 11 số lẻ là 1; 3; 5; …; 21.

Suy ra số các kết quả thuận lợi cho biến cố B là nB=C112=55.

Xác suất của biến cố B là: PB=nBnΩ=55210=1142.

c) Tổng của hai số được chọn là số chẵn khi hai số đó phải cùng chẵn hoặc cùng lẻ hay C = A ∪ B.

Ta có: A ∩ B = ∅ nên A và B là hai biến cố xung khắc.

Suy ra: PC=PAB=PA+PB=314+1142=1021.

Bài 20 trang 19 SBT Toán 11 Tập 2: Trong một ngày bán hàng khuyến mại, cửa hàng để lẫn cả sản phẩm loại I và sản phẩm loại II vào một hộp, các sản phẩm có hình thức bề ngoài giống nhau và đồng giá. Trong hộp có 10 sản phẩm loại I và 18 sản phẩm loại II. Một người lấy ngẫu nhiên 3 sản phẩm. Tính xác suất của biến cố A: “Trong ba sản phẩm lấy được, có cả sản phẩm loại I và sản phẩm loại II”.

Lời giải:

Mỗi cách chọn ngẫu nhiên 3 sản phẩm từ 10 + 18 = 28 sản phẩm trong hộp cho ta một tổ hợp chập 3 của 28 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 3 của 28 phần tử và nΩ=C283=3  276.

Sơ đồ hình cây biểu thị các khả năng thuận lợi cho biến cố A:

Trong một ngày bán hàng khuyến mại, cửa hàng để lẫn cả sản phẩm loại I và sản phẩm loại II vào một hộp

Số các kết quả thuận lợi cho biến cố A là nA=C10218+C18210=2  340.

Xác suất của biến cố A là PA=nAnΩ=2  3403  276=57.

Chú ý: Đối với bài toán này, ta có thể sử dụng biến cố đối của biến cố A là A¯: “Trong ba sản phẩm lấy được, chỉ có một loại sản phẩm”.

Lý thuyết Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

1. Phép toán trên các biến cố

a) Biến cố hợp

Cho hai biến cố A và B. Khi đó A, B là các tập con của không gian mẫu Ω. Đặt C=AB, ta có C là một biến cố và được gọi là biến cố hợp của hai biến cố A và B, kí hiệu là AB.

Lý thuyết Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

b) Biến cố giao

Cho hai biến cố A và B. Khi đó A, B là các tập con của không gian mẫu Ω. Đặt D=AB, ta có D là một biến cố và được gọi là biến cố giao của hai biến cố A và B, kí hiệu là AB hay AB.

Lý thuyết Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

c) Biến cố xung khắc

Cho hai biến cố A và B. Khi đó A, B là các tập con của không gian mẫu Ω. Nếu AB= thì A và B gọi là hai biến cố xung khắc.

Lý thuyết Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 3)

2. Biến cố độc lập

Cho hai biến cố A và B. Hai biến cố A và B được gọi là độc lập nếu việc xảy ra hay không xảy ra của biến cố này không làm ảnh hưởng đến xác suất xảy ra của biến cố kia.

Chú ý: Nếu A, B là hai biến cố độc lập thì mỗi cặp biến cố sau cũng độc lập: A và B¯; A¯ và B; A¯B¯.

3. Các quy tắc tính xác suất

a) Công thức cộng xác suất

Cho hai biến cố A và B. Khi đó P(AB)=P(A)+P(B)P(AB).

Hệ quả: Nếu hai biến cố A và B là xung khắc thì P(AB)=P(A)+P(B).

b) Công thức nhân xác suất

Cho hai biến cố A và B. Nếu hai biến cố A và B là độc lập thì P(AB)=P(A).P(B).

Sơ đồ tư duy Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Lý thuyết Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 4)

Xem thêm Lời giải bài tập SBT Toán 11 sách Cánh diều hay, chi tiết khác:

Bài 5: Hình lăng trụ và hình hộp

Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian

Bài tập cuối chương 4

Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm

Bài tập cuối chương 5 trang 20

1 792 29/10/2024


Xem thêm các chương trình khác: