Một lớp học có 40 học sinh, trong đó có 25 học sinh thích chơi cầu lông, 20 học sinh thích

Lời giải Bài 16 trang 19 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 2,421 20/11/2024


Giải SBT Toán 11 Bài 2: Biến cố hợp và biến cố giao. Biến cố độc lập. Các quy tắc tính xác suất

Bài 16 trang 19 SBT Toán 11 Tập 2: Một lớp học có 40 học sinh, trong đó có 25 học sinh thích chơi cầu lông, 20 học sinh thích chơi bóng bàn, 12 học sinh thích chơi cả cầu lông và bóng bàn. Chọn ngẫu nhiên 1 học sinh. Tính xác suất của các biến cố:

a) A: “Học sinh được chọn thích chơi cầu lông”;

b) B: “Học sinh được chọn thích chơi bóng bàn”;

c) C: “Học sinh được chọn vừa thích chơi cầu lông vừa thích chơi bóng bàn”;

d) D: “Học sinh được chọn thích chơi ít nhất một trong hai môn thể thao là câu lông hoặc bóng bàn”.

Lời giải:

Mỗi cách chọn 1 học sinh từ 40 học sinh trong lớp cho ta một tổ hợp chập 1 của 40 phần tử. Do đó, không gian mẫu Ω gồm các tổ hợp chập 1 của 40 phần tử vànΩ=C401=40.

a) Xét biến cố A: “Học sinh được chọn thích chơi cầu lông”.

Số các kết quả thuận lợi cho biến cố A là nA=C251=25.

Xác suất của biến cố A là: PA=nAnΩ=2540=58.

b) Số các kết quả thuận lợi cho biến cố B là nB=C201=20.

Xác suất của biến cố B là: PB=nBnΩ=2040=12.

c) Số các kết quả thuận lợi cho biến cố C là nC=C121=12.

Xác suất của biến cố C là: PC=nCnΩ=1240=310.

d) Ta thấy D = A ∪ B và C = A ∩ B nên ta có:

PD=PAB=PA+PBPAB

=PA+PBPC=58+12310=3340.

*Phương pháp giải:

Phương pháp giải:

Bước 1: Xác định biến cố của các xác suất, có thể gọi tên các biến cố A; B; C; D để biểu diễn.

Bước 2: Tìm mối quan hệ giữa các biến cố vừa đặt tên, biểu diễn biến cố trung gian và quan trọng nhất là biến cố đề bài đang yêu cầu tính xác suất thông qua các biến cố ở bước 1.

Bước 3: Sử dụng các mối quan hệ vừa xác định ở bước 2 để chọn công thức cộng hay công thức nhân phù hợp.

*Lý thuyết:

a) Công thức cộng xác suất

- Nếu AB= thì A và B được gọi là hai biến cố xung khắc.

- Nếu hai biến cố A, B xung khắc nhau thì PAB=PA+PB

- Nếu các biến cố A1 ; A2; A3 ; An đôi một xung khắc với nhau thì

PA1A2...Ak=PA1+PA2+...+PAk

- Công thức tính xác suất của biến cố đối: PA¯=1PA

- Mở rộng: Với hai biến cố bất kì cùng liên quan đến phép thử thì:

PAB=PA+PBPAB

b) Công thức nhân xác suất

- Hai biến cố gọi là độc lập nếu việc xảy ra hay không xảy ra của biến cố này không ảnh hưởng tới xác suất xảy ra biến cố kia.

- Nếu A và B là hai biến cố độc lập khi và chỉ khi PAB=PA.PB

- Một cách tổng quát, nếu k biến cố A1,A2,A3,...,Ak là độc lập thì

PA1A2A3...Ak=PA1.PA2.PA3...PAk

* Chú ý:

Nếu A và B độc lập thì A và B¯ độc lập, B và A¯ độc lập, B¯ A¯ độc lập. Do đó nếu A và B độc lập thì ta còn có các đẳng thức

PAB¯=PA.PB¯PA¯B=PA¯.PBPA¯B¯=PA¯.PB¯

Xem thêm

Công thức tính xác suất và cách giải các dạng bài tập (2024) chi tiết nhất

1 2,421 20/11/2024


Xem thêm các chương trình khác: