Sách bài tập Toán 11 Bài 3 (Cánh diều): Đạo hàm cấp hai

Với giải sách bài tập Toán 11 Bài 3: Đạo hàm cấp hai sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 3.

1 432 29/10/2024


Giải SBT Toán 11 Bài 3: Đạo hàm cấp hai

Bài 29 trang 77 SBT Toán 11 Tập 2: Gia tốc tức thời của chuyển động s = f(t) tại thời điểm t0 là:

A. f(t0).

B. f’’(t0).

C. f’(t0).

D. f’(t0).

Lời giải:

Đáp án đúng là: B

Gia tốc tức thời của chuyển động s = f(t) tại thời điểm t0 là đạo hàm cấp hai của f(s = f(t) và bằng f’’(t0).

Bài 30 trang 77 SBT Toán 11 Tập 2: Cho hàm số f(x) = e–x. Khi đó f’’(x) bằng:

A. e–x.

B. – e–x.

C. – ex.

D. ex.

Lời giải:

Đáp án đúng là: A

Xét hàm số f(x) = e–x. Ta có:

f’(x) = (e–x) = – e–x.

f’’(x) = (– e–x)’ = e–x.

Vậy ta chọn phương án A.

Bài 31 trang 77 SBT Toán 11 Tập 2: Cho hàm số f(x) = ln(3x). Khi đó f’’(x) bằng:

A. 19x2.

B. 1x2.

C. 3x2.

D. 3x2.

Lời giải:

Đáp án đúng là: B

Xét hàm số f(x) = ln(3x). Ta có:

f'x=ln3x'=3x'3x=33x=1x.

f''x=1x'=1x2.

Vậy ta chọn phương án B.

Bài 32 trang 78 SBT Toán 11 Tập 2: Cho hàm số fx=1x. Khi đó f’’(1) bằng:

A. 1.

B. –2.

C. 2.

D. 1.

Lời giải:

Đáp án đúng là: C

Xét hàm số fx=1x. Ta có:

f'x=1x'=1x2;

f''x=1x2'=1x2'x2'x22=2xx4=2x3.

Do đó f''1=213=2.

Bài 33 trang 78 SBT Toán 11 Tập 2: Tìm đạo hàm cấp hai của mỗi hàm số sau:

a) fx=13x+5;

b) gx=2x+3x2.

Lời giải:

a) Xét hàm số fx=13x+5. Ta có:

f'x=3x+5'3x+52=33x+52;

f''x=33x+52'3x+522=323x+533x+54=183x+53.

b) Xét hàm số gx=2x+3x2. Ta có:

g'x=x+3x2'ln22x+3x2=6x+1ln22x+3x2.

g''x=ln26x+1'2x+3x2+6x+12x+3x2'

=ln262x+3x2+6x+16x+1ln22x+3x2

=6ln22x+3x2+6x+1ln222x+3x2.

Bài 34 trang 78 SBT Toán 11 Tập 2: Cho hàm số f(x) = sinx . cosx . cos2x.

a) Tìm đạo hàm cấp hai của hàm số.

b) Tính đạo hàm cấp hai của hàm số tại x0=π6.

Lời giải:

a) Ta có: fx=sinxcosxcos2x=12sin2xcos2x=14sin4x.

Khi đó, f'x=144x'cos4x=cos4x.

f’’(x) = (4x)’.(–sin4x) = –4sin4x.

b) Vì f’’(x) = –4sin4x nên ta có:

f''π6=4sin4π6=4sin2π3=432=23.

Bài 35 trang 78 SBT Toán 11 Tập 2: Cho hàm số f(x) = x3 + 4x2 + 5. Giải bất phương trình f’(x) – f’’(x) ≥ 0.

Lời giải:

Xét hàm số f(x) = x3 + 4x2 + 5. Ta có:

f’(x) = (x3 + 4x2 + 5)’ = 3x2 + 8x;

f’’(x) = (3x2 + 8x)’ = 6x + 8.

Khi đó, f’(x) – f’’(x) = 3x2 + 8x – 6x – 8 = 3x2 + 2x – 8.

Để f’(x) – f’’(x) ≥ 0 thì 3x2 + 2x – 8 ≥ 0

3x4x+20x43x2.

Vậy bất phương trình có tập nghiệm S=;243;+.

Bài 36 trang 78 SBT Toán 11 Tập 2: Một chất điểm chuyển động theo phương trình st=13t33t2+8t+2, trong đó t > 0, t tính bằng giây, s(t) tính bằng mét. Tính gia tốc tức thời của chất điểm:

a) Tại thời điểm t = 5 (s).

b) Tại thời điểm mà vận tốc tức thời của chất điểm bằng –1 m/s.

Lời giải:

Ta có: s't=13t33t2+8t+2'=t26t+8;

s’’(t) = (t2 – 6t + 8)’ = 2t – 6.

Vậy gia tốc tức thời của chất điểm tại thời điểm t (s) là s’’(t) = (t2 – 6t + 8)’ = 2t – 6.

a) Gia tốc tức thời của chất điểm tại thời điểm t = 5 (s) là:

s’’(5) = 2.5 – 6 = 4 (m/s2).

b) Tại thời điểm mà vận tốc tức thời của chất điểm bằng –1 m/s là:

s’(t) = t2 – 6t + 8 = –1

⇔ t2 – 6t + 9 = 0

⇔ (t – 3)2 = 0

⇔ t – 3 = 0

⇔ t = 3 (s).

Gia tốc tức thời của chất điểm tại thời điểm t = 3 (s) là:

s’’(3) = 2.3 – 6 = 0 (m/s2).

Bài 37 trang 78 SBT Toán 11 Tập 2: Một chất điểm có phương trình chuyển động st=3sint+π3, trong đó t > 0, t tính bằng giây, s(t) tính bằng centimet. Tính gia tốc tức thời của chất điểm tại thời điểm t=π2  s.

Lời giải:

Ta có:

s't=3cost+π3;

s''t=3sint+π3.

Do đó gia tốc tức thời của chất điểm tại thời điểm t (s) là

s''t=3sint+π3 (cm/s2).

Gia tốc tức thời của chất điểm tại thời điểm t=π2  s là:

s''π2=3sinπ2+π3=3sin5π6=32 (cm/s2).

Lý thuyết Đạo hàm cấp hai

1. Định nghĩa

Giả sử hàm số y = f(x) có đạo hàm y’ = f’(x) tại mọi điểm x(a;b). Nếu hàm số y’ = f’(x) tiếp tục có đạo hàm tại x thì ta gọi đạo hàm của y’ tại x là đạo hàm cấp hai của hàm số y = f(x) tại x, kí hiệu là y” hoặc f”(x).

2. Ý nghĩa cơ học

Đạo hàm cấp hai s”(t) là gia tốc tức thời của chuyển động s = s(t) tại thời điểm t.

Sơ đồ tư duy Đạo hàm cấp hai

Lý thuyết Đạo hàm cấp hai (Cánh diều 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

Xem thêm lời giải SBT Toán lớp 11 bộ sách Cánh diều hay, chi tiết khác:

Bài tập cuối chương 7

Bài 1: Hai đường thẳng vuông góc

Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 4: Hai mặt phẳng vuông góc

1 432 29/10/2024


Xem thêm các chương trình khác: