Cho đoạn thẳng AB và mặt phẳng (P) sao cho (P) vuông góc AB và (P) cắt đoạn thẳng AB tại điểm H

Lời giải Bài 23 trang 95 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 513 14/11/2023


Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 23 trang 95 SBT Toán 11 Tập 2: Cho đoạn thẳng AB và mặt phẳng (P) sao cho (P) ⊥ AB và (P) cắt đoạn thẳng AB tại điểm H thoả mãn HA = 4 cm, HB = 9 cm. Điểm C chuyển động trong mặt phẳng (P) thoả mãn ACB^=90°. Chứng minh rằng điểm C thuộc đường tròn tâm H bán kính 6 cm trong mặt phẳng (P).

Cho đoạn thẳng AB và mặt phẳng (P) sao cho (P) ⊥ AB và (P) cắt đoạn thẳng AB tại điểm H

Lời giải:

ACB^=90° nên A, B, C không thẳng hàng.

Ta có: AB ⊥ (P), HC ⊂ (P) nên AB ⊥ HC.

Áp dụng hệ thức lượng trong tam giác ACB vuông tại C ta có:

HC2 = HA.HB = 4.9 = 36, suy ra HC = 6 (cm).

Ta thấy khi C chuyển động trong mặt phẳng (P) thoả mãn ACB^=90° thì C luôn cách H (với H là điểm cố định) một khoảng không đổi HC = 6 cm.

Vậy C thuộc đường tròn tâm H bán kính 6 cm trong (P).

1 513 14/11/2023


Xem thêm các chương trình khác: