Cho hình chóp S.ABC thoả mãn SA = SB = SC. Gọi O là tâm đường tròn ngoại tiếp của tam giác

Lời giải Bài 16 trang 95 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 819 14/11/2023


Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 16 trang 95 SBT Toán 11 Tập 2: Cho hình chóp S.ABC thoả mãn SA = SB = SC. Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC. Chứng minh rằng SO ⊥ (ABC).

Lời giải:

Cho hình chóp S.ABC thoả mãn SA = SB = SC. Gọi O là tâm đường tròn ngoại tiếp của tam giác ABC

Gọi O’ là hình chiếu của S trên (ABC). Khi đó, SO’ ⊥ (ABC).

Mà O’A, O’B, O’C đều nằm trên (ABC) nên SO’ ⊥ O’A, SO’ ⊥ O’B, SO’ ⊥ O’C.

Xét tam giác SO’A và tam giác SO’B có:

SO'A^=SO'B^=90°;

SA = SB (gt);

SO’ chung

Suy ra ∆SO’A = ∆SO’B (cạnh huyền – cạnh góc vuông)

Do đó: O’A = O’B (hai cạnh tương ứng)

Tương tự: ∆SO’A = ∆SO’C, suy ra O’A = O’C.

Từ đó ta có: O’A = O’B = O’C hay O’ là tâm đường tròn ngoại tiếp tam giác ABC.

Suy ra: O ≡ O’, mà SO’ ⊥ (ABC).

Vậy SO ⊥ (ABC).

1 819 14/11/2023


Xem thêm các chương trình khác: