Cho hình chóp S.ABC có SA vuông góc (ABC). Gọi M, N, P lần lượt là trọng tâm của ba tam giác SAB

Lời giải Bài 20 trang 95 SBT Toán 11 Tập 2 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 953 14/11/2023


Giải SBT Toán 11 Bài 2: Đường thẳng vuông góc với mặt phẳng

Bài 20 trang 95 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA. Chứng minh rằng SA ⊥ (MNP).

Lời giải:

Cho hình chóp S.ABC có SA ⊥ (ABC). Gọi M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA

Gọi H, K, I lần lượt là trung điểm của AB, BC, CA.

Vì M, N, P lần lượt là trọng tâm của ba tam giác SAB, SBC, SCA nên ta có:

SMSH=SNSK=SPSI=23.

Theo định lý Thalès: MN // HK, MP // HI.

Mà HK ⊂ (ABC), IH ⊂ (ABC).

Suy ra: MN // (ABC), MP // (ABC).

Trong (MNP) có: MN ∩ MP = M, MN // (ABC), MP // (ABC).

Suy ra (MNP) // (ABC).

Lại có SA ⊥ (ABC) nên SA ⊥ (MNP).

1 953 14/11/2023


Xem thêm các chương trình khác: