Cho tứ diện đều ABCD có cạnh bằng a, côsin của góc giữa hai mặt phẳng (ACD) và (BCD) bằng

Lời giải Bài 7.45 trang 42 SBT Toán 11 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 286 08/11/2023


Giải SBT Toán 11 Bài tập cuối chương 7

Bài 7.45 trang 42 SBT Toán 11 Tập 2: Cho tứ diện đều ABCD có cạnh bằng a, côsin của góc giữa hai mặt phẳng (ACD) và (BCD) bằng

A. 23 .

B. 32 .

C. 33 .

D. 13 .

Lời giải:

Đáp án đúng là: D

Cho tứ diện đều ABCD có cạnh bằng a, côsin của góc giữa hai mặt phẳng (ACD) và (BCD)

Gọi M là trung điểm của CD.

Do tam giác ACD và BCD là tam giác đều nên AM CD và BM CD.

Khi đó góc giữa hai mặt phẳng (ACD) và (BCD) bằng góc giữa hai đường thẳng AM và BM, mà (AM,BM) = AMB^.

Vì tam giác ACD và BCD là tam giác đều cạnh bằng a nên AM = BM = a32 .

Áp dụng định lí côsin cho tam giác ABM có:

cosAMB^=AM2+BM2AB22AMBM=3a24+3a24a22a32a32=a223a22=13.

Vậy côsin góc giữa hai mặt phẳng (ACD) và (BCD) bằng 13 .

1 286 08/11/2023


Xem thêm các chương trình khác: