Cho tam giác ABC cân tại A, có hai đường cao là BE và CD (D thuộc AB, E thuộc AC)

Lời giải Bài 6 trang 60 SBT Toán 8 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 8.

1 713 10/09/2023


Giải SBT Toán 8 Bài 3: Hình thang – Hình thang cân

Bài 6 trang 60 SBT Toán 8 Tập 1: Cho tam giác ABC cân tại A, có hai đường cao là BE và CD (D ∈ AB, E ∈ AC). Chứng minh tứ giác BDEC là hình thang cân.

Lời giải:

Cho tam giác ABC cân tại A, có hai đường cao là BE và CD (D ∈ AB, E ∈ AC)

Do BE, CD là hai đường cao nên BE ⊥ AC, CD ⊥ AB.

Xét ∆BEC vuông tại E và ∆CDB vuông tại D, ta có:

BC là cạnh chung; ECB^=DBC^ (do ∆ABC cân tại A)

Do đó ∆BEC = ∆CDB (cạnh huyền – góc nhọn)

Suy ra EC = BD (hai cạnh tương ứng)

Mà AC = AB nên AC ‒ EC = AB ‒ BD, hay AE = AD

Do đó ∆ADE cân tại A suy ra ADE^=AED^=180°-A^2. (1)

Vì ∆ABC cân tại A nên ABC^=ACB^=180°-A^2. (2)

Từ (1) và (2) suy ra ADE^=ABC^.

Mà hai góc này ở vị trí đồng vị nên DE // BC

Suy ra tứ giác BDEC là hình thang.

Hìnhthang BDEC có DBC^=ECB^ nên là hình thang cân.

1 713 10/09/2023


Xem thêm các chương trình khác: