Toán 8 Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Với giải bài tập Toán lớp 8 Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 8.
Mục lục Giải Toán 8 Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Video giải Toán 8 Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Câu hỏi
Câu hỏi 1 trang 22 Toán 8 Tập 1: Tính nhanh 15.64 + 25.100 + 36.15 + 60.100
Lời giải
15.64 + 25.100 + 36.15 + 60.100
= (15.64 + 36.15) + (25.100 + 60.100)
= 15.(64 + 36) + 100.(25 + 60)
= 15.100 + 100.85
= 100.(15 + 85)
= 100.100
= 10 000
Câu hỏi 2 trang 22 Toán 8 Tập 1: Khi thảo luận nhóm, một bạn ra đề bài: Hãy phân tích đa thức x4 - 9x3 + x2 - 9x thành nhân tử.
x4 - 9x3 + x2 – 9x = x(x3 - 9x2 + x – 9).
x4 - 9x3 + x2 – 9x = (x4 - 9x3) + (x2 – 9x)
= x3(x – 9) + x(x – 9) = (x – 9)(x3 + x).
x4 - 9x3 + x2 – 9x = (x4 + x2) - (9x3 + 9x)
= (x2 – 9x) (x2 + 1)= x(x – 9)(x2 + 1).
Hãy nêu ý kiến của em về lời giải của các bạn.
Lời giải
Lời giải của các bạn đều thỏa mãn yêu cầu đề bài là phân tích đa thức thành nhân tử
Bài tập
Bài 47 trang 22 Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:
Lời giải:
a) Cách 1: Nhóm hai hạng tử thứ 1 và thứ 2, hạng tử thứ 3 và thứ 4
x2 – xy + x – y
= (x2 – xy) + (x – y) (Nhóm thứ nhất có nhân tử chung là x)
= x(x – y) + (x – y) (Xuất hiện nhân tử chung x – y)
= (x + 1)(x – y)
Cách 2: Nhóm hạng tử thứ 1 và thứ 3 ; hạng tử thứ 2 và thứ 4
x2 – xy + x – y
= (x2 + x) – (xy + y)
(nhóm thứ nhất có nhân tử chung là x ; nhóm thứ hai có nhân tử chung là y)
= x.(x + 1) – y.(x + 1) (Xuất hiện nhân tử chung x + 1)
= (x – y)(x + 1)
b) xz + yz – 5(x + y)
= (xz + yz) – 5(x + y) (Nhóm thứ nhất có nhân tử chung là z ; nhóm thứ hai có nhân tử chung là 5)
= z(x + y) – 5(x + y) (Xuất hiện nhân tử chung là x + y)
= (z – 5)(x + y)
c) Cách 1: Nhóm hai hạng tử đầu tiên với nhau và hai hạng tử cuối với nhau:
3x2 – 3xy – 5x + 5y
= (3x2 – 3xy) – (5x – 5y)
(Nhóm thứ nhất có nhân tử chung là 3x ; nhóm thứ hai có nhân tử chung là 5)
= 3x(x – y) – 5(x – y) (Xuất hiện nhân tử chung là (x – y))
= (x – y)(3x – 5)
Cách 2: Nhóm hạng tử thứ 1 với hạng tử thứ 3; hạng tử thứ 2 với hạng tử thứ 4:
3x2 – 3xy – 5x + 5y
= (3x2 – 5x) – (3xy – 5y)
(Nhóm thứ nhất có nhân tử chung là x, nhóm thứ hai có nhân tử chung là y)
= x.(3x – 5) – y.(3x – 5)
(Xuất hiện nhân tử chung 3x – 5)
= (x – y).(3x – 5).
Bài 48 trang 22 Toán 8 Tập 1: Phân tích các đa thức sau thành nhân tử:
c) x2 – 2xy + y2 – z2 + 2zt – t2
Lời giải:
a) Nhận thấy x2 + 4x + 4 là hằng đẳng thức nên ta nhóm với nhau.
x2 + 4x – y2 + 4
= (x2 + 4x + 4) – y2
= (x + 2)2 – y2 (Xuất hiện hằng đẳng thức (3))
= (x + 2 – y)(x + 2 + y)
b) 3x2 + 6xy + 3y2 – 3z2
= 3.(x2 + 2xy + y2 – z2)
(Nhận thấy xuất hiện x2 + 2xy + y2 là hằng đẳng thức nên ta nhóm với nhau)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
c) x2 – 2xy + y2 – z2 + 2zt – t2
(Nhận thấy x2 – 2xy + y2 và z2 – 2zt + t2 là các hằng đẳng thức)
= (x2 – 2xy + y2) – (z2 – 2zt + t2)
= (x – y)2 – (z – t)2 (xuất hiện hằng đẳng thức (3))
= [(x – y) – (z – t)][(x – y) + (z – t)]
= (x – y – z + t)(x – y + z –t)
Bài 49 trang 22 Toán 8 Tập 1: Tính nhanh:
a) 37,5.6,5 – 7,5.3,4 – 6,6.7,5 + 3,5.37,5
Lời giải:
a) 37,5.6,5 – 7,5.3,4 – 6,6.7.5 + 3,5.37,5
(Hạng tử đầu tiên và cuối cùng đều có nhân tử 37,5; hai hạng tử giữa đều có nhân tử 7,5)
= (37,5.6,5 + 3,5.37,5) – (7,5.3,4 + 6,6.7,5)
= 37,5(6,5 + 3,5) – 7,5(3,4 + 6,6)
= 37,5.10 – 7,5.10
= 375 – 75 = 300
b) 452 + 402 – 152 + 80.45
= 452 + 80.45 + 402 – 152
= 452 + 2.45.40 + 402 – 152
= (45 + 40)2 – 152
= 852 – 152
= (85 – 15)(85 + 15)
= 70.100 = 7 000.
Bài 50 trang 23 Toán 8 Tập 1: Tìm x, biết:
Lời giải:
a) x(x – 2) + x – 2 = 0 (Xuất hiện nhân tử chung x – 2)
⇔ (x – 2)(x + 1) = 0
Vậy x = – 1 hoặc x = 2.
b) 5x(x – 3) – x + 3 = 0
⇔ 5x(x – 3) – (x – 3) = 0
(Xuất hiện nhân tử chung x – 3)
⇔ (x – 3)(5x – 1) = 0
Vậy x = 3 hoặc
Bài giảng Toán 8 Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
Xem thêm lời giải bài tập Toán học lớp 8 hay, chi tiết khác:
Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp
Bài 10: Chia đơn thức cho đơn thức
Bài 11: Chia đa thức với đơn thức
Bài 12: Chia đa thức một biến đã sắp xếp
Xem thêm tài liệu khác Toán học lớp 8 hay, chi tiết khác:
Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử
Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án
Xem thêm các chương trình khác:
- Tóm tắt tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 8 (hay nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Soạn văn 8 (ngắn nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Văn mẫu lớp 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Hóa học 8
- Giải sbt Hóa học 8
- Giải vở bài tập Hóa học 8
- Lý thuyết Hóa học 8
- Các dạng bài tập Hóa học lớp 8
- Giải sgk Vật Lí 8
- Giải sbt Vật Lí 8
- Lý thuyết Vật Lí 8
- Giải vở bài tập Vật lí 8
- Giải sgk Tiếng Anh 8 (sách mới) | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2
- Giải sgk Tiếng Anh 8 | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 8 (sách mới) | Sách bài tập Tiếng Anh 8
- Giải sbt Tiếng Anh 8 (thí điểm)
- Giải sgk Tin học 8 | Giải bài tập Tin học 8 Học kì 1, Học kì 2 (sách mới)
- Giải sgk Lịch Sử 8 | Giải bài tập Lịch sử 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch sử 8 (sách mới) | Kiến thức trọng tâm Lịch sử 8
- Giải vở bài tập Lịch sử 8
- Giải Tập bản đồ Lịch sử 8
- Đề thi Lịch Sử 8
- Giải vở bài tập Sinh học 8
- Giải sgk Sinh học 8
- Lý thuyết Sinh học 8
- Giải sgk Giáo dục công dân 8 | Giải bài tập Giáo dục công dân 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Giáo dục công dân 8 (sách mới) | Kiến thức trọng tâm GDCD 8
- Lý thuyết Địa Lí 8 (sách mới) | Kiến thức trọng tâm Địa Lí 8
- Giải sgk Địa Lí 8 | Giải bài tập Địa Lí 8 Học kì 1, Học kì 2 (sách mới)
- Giải Tập bản đồ Địa Lí 8
- Đề thi Địa lí 8