Lý thuyết Các trường hợp bằng nhau của tam giác vuông – Toán lớp 7 Kết nối tri thức
Với lý thuyết Toán lớp 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 7.
A. Lý thuyết Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông - Kết nối tri thức
1. Ba trường hợp bằng nhau của tam giác vuông
• Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
AB = A'B'; AC = A'C'. Khi đó = (hai cạnh góc vuông).
• Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
AC = A'C'; . Khi đó = (cạnh góc vuông – góc nhọn kề).
• Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại <A'có:
BC = B'C'; . Khi đó = (cạnh huyền – góc nhọn).
2. Trường hợp bằng nhau đặc biệt của tam giác vuông
• Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Ví dụ: Trong hình dưới đây, vuông tại A và vuông tại A'có:
BC = B'C'; AC = A'C'. Khi đó = <(cạnh huyền – cạnh góc vuông).
Bài tập Các trường hợp bằng nhau của tam giác vuông
Bài 1. Mỗi hình sau có các cặp tam giác vuông nào bằng nhau? Vì sao?
Hướng dẫn giải
a) Hai tam giác DEG (vuông tại G) và tam giác DFG (vuông tại G) có:
DG là cạnh chung
Nên (cạnh góc vuông – góc nhọn kề).
b) Hai tam giác HIK (vuông tại I) và tam giác KJH (vuông tại J) có:
HK là cạnh chung
HI = KJ
Nên (cạnh huyền – cạnh góc vuông).
c) Hai tam giác MLO (vuông tại L) và tam giác ONM (vuông tại N) có:
MO là cạnh chung
Nên (cạnh huyền –góc nhọn).
d) Hai tam giác SRP (vuông tại R) và tam giác QPR (vuông tại P) có:
RP là cạnh chung
SR = QP
Nên (hai cạnh góc vuông).
Bài 2. Cho hình chữ nhật ABCD, M là trung điểm của cạnh CD. Chứng minh rằng .
Hướng dẫn giải
ABCD là hình chữ nhật ⇒ AD = BC và
Xét tam giác ADM (vuông tại D) và tam giác BCM (vuông tại C) có:
AD = BC (chứng minh trên)
DM = CM (theo giả thiết)
⇒ (hai cạnh góc vuông)
Bài 3. Cho hình vẽ dưới đây, biết AB vuông góc với BC, AD vuông góc với CD và cạnh AB = AD. Chứng minh rằng:
a) ;
b) AC vuông góc với BD.
Hướng dẫn giải
a) Xét tam giác BAC (vuông tại B) và tam giác DAC (vuông tại D) có:
AC là cạnh chung
AB = AD (theo giả thiết)
⇒ (cạnh huyền – cạnh góc vuông)
b) Gọi H là giao điểm của AC và BD.
Vì (theo câu a) ⇒ (hai góc tương ứng) hay
Xét tam giác BAH và tam giác DAH có:
AB = AD (theo giả thiết)
(chứng minh trên)
AH là cạnh chung
⇒ (c.g.c)
⇒ (hai góc tương ứng)
Mà (hai góc kề bù)
Nên
⇒AC ⊥ BD (đpcm).
B. Trắc nghiệm Các trường hợp bằng nhau của tam giác vuông (Kết nối tri thức 2023) có đáp án
I. Nhận biết
Câu 1. Cho ∆ABC vuông tại B và ∆DEF vuông tại E có AB = DE và BC = EF. Khi đó ∆ABC = ∆DEF theo trường hợp:
A. cạnh huyền – cạnh góc vuông;
B. cạnh huyền – góc nhọn;
C. cạnh – góc – cạnh;
D. góc – cạnh – góc.
Hướng dẫn giải
Đáp án: C
Giải thích:
Xét ∆ABC và ∆DEF, có:
.
AB = DE (giả thiết)
BC = EF (giả thiết)
Do đó ∆ABC = ∆DEF (c.g.c)
Vậy ta chọn phương án C.
Câu 2. Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông không bằng nhau?
A.
B.
C.
D.
Hướng dẫn giải
Đáp án: D
Giải thích:
⦁ Xét phương án A:
Xét ∆ABC và ∆A’B’C’, có:
.
AB = A’B’ (giả thiết)
BC = B’C’ (giả thiết)
Do đó ∆ABC = ∆A’B’C’ (c.g.c)
Vì vậy phương án A có chứa hai tam giác vuông bằng nhau.
⦁ Xét phương án B:
Xét ∆A’B’C’ và ∆ABC, có:
.
B’C’ = BC (giả thiết)
(giả thiết)
Do đó ∆A’B’C’ = ∆ABC (g.c.g)
Vì vậy phương án B có chứa hai tam giác vuông bằng nhau.
⦁ Xét phương án C:
Xét ∆ABC và ∆A’B’C’, có:
.
AC = A’C’ (giả thiết)
(giả thiết)
Do đó ∆ABC = ∆A’B’C’ (cạnh huyền – góc nhọn)
Vì vậy phương án C có chứa hai tam giác vuông bằng nhau.
⦁ Xét phương án D:
Xét ∆ABC và ∆A’B’C’, có:
.
(giả thiết)
(giả thiết)
Do đó ∆ABC và ∆A’B’C’ không bằng nhau do không có trường hợp bằng nhau góc – góc – góc.
Vậy ta chọn phương án D.
Câu 3. Cho ∆MNP vuông tại P và ∆XYZ vuông tại Z có MP = XZ. Để ∆MNP = ∆XYZ theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện gì?
A. MN = XY;
B. MN = YZ;
C. ;
D. .
Hướng dẫn giải
Đáp án: A
Giải thích:
Ta thấy MP, XZ lần lượt là cạnh góc vuông của ∆MNP và ∆XYZ.
Do đó để ∆MNP = ∆XYZ theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện hai cạnh huyền của hai tam giác đó bằng nhau. Nghĩa là, MN = XY.
Vậy ta chọn phương án A.
Câu 4. Cho ∆ABC và ∆PQR. Giả thiết nào dưới đây không suy ra được ∆ABC = ∆PQR?
Hướng dẫn giải
Đáp án: A
Giải thích:
⦁ Xét phương án A:
Xét ∆ABC và ∆PQR, có:
⦁ Xét phương án C:
Xét ∆ABC và ∆PQR, có:
.
BC = QR (giả thiết)
(giả thiết)
Do đó ∆ABC = ∆PQR (cạnh huyền – góc nhọn)
⦁ Xét phương án D:
Xét ∆ABC và ∆PQR, có:
.
BC = QR (giả thiết)
AC = PR (giả thiết)
Do đó ∆ABC = ∆PQR (cạnh huyền – cạnh góc vuông)
Vậy ta chọn phương án A.
Câu 5. Phát biểu nào dưới đây đúng nhất?
A. Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau;
B. Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau;
C. Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau;
D. Cả A, B, C đều đúng.
Hướng dẫn giải
Đáp án: D
Giải thích:
Phương án A: Phát biểu của trường hợp cạnh góc vuông – góc nhọn kề (hay g.c.g).
Phương án B: Phát biểu của trường hợp cạnh huyền – cạnh góc vuông.
Phương án C: Phát biểu của trường hợp cạnh huyền – góc nhọn.
Vậy ta chọn phương án D.
II. Thông hiểu
Câu 1. Cho ∆ABC có AB = AC. Gọi AM là tia phân giác của (M ∈ BC). Kẻ MD vuông góc AB (D ∈ AB) và ME vuông góc với AC (E ∈ AC).
Cho các khẳng định sau:
Gọi m là số kết luận đúng và n là số kết luận sai. Giá trị của m và n là:
A. m = 0 và n = 1;
B. m = 2 và n = 1;
C. m = 3 và n = 0;
D. m = 1 và n = 2.
Hướng dẫn giải
Đáp án: C
Giải thích:
Xét ∆AMD và ∆AME, có:
AM là cạnh chung.
.
(AM là phân giác của )
Do đó ∆AMD = ∆AME (cạnh huyền – góc nhọn)
Suy ra AD = AE và MD = ME (các cặp cạnh tương ứng)
Do đó (III) đúng.
Ta có AB = AC (giả thiết) và AD = AE (chứng minh trên)
Suy ra AB – AD = AC – AE.
Khi đó DB = EC.
Xét ∆MBD và ∆MCE, có:
.
DB = EC (chứng minh trên)
MD = ME (chứng minh trên)
Do đó ∆MBD = ∆MCE (c.g.c). Do đó (II) đúng.
Suy ra (cặp góc tương ứng). Do đó (I) đúng.
Vậy ta có 3 phát biểu đúng và 0 phát biểu sai hay m = 3 và n = 0.
Vậy ta chọn phương án C.
Câu 2. Cho ∆ABC có AB = AC (). Kẻ BD vuông góc với AC (D ∈ AC) và CE vuông góc với AB (E ∈ AB). Gọi H là giao điểm của BD và CE.
Cho bảng sau:
A |
B |
a. ∆AEC |
1. ∆HDC |
b. ∆HEB |
2. ∆CDB |
c. ∆BEC |
3. ∆ADB |
Ghép các ý ở cột A với cột B để được một đẳng thức đúng?
A. a – 2; b – 1; c – 3;
B. a – 1; b – 3; c – 2;
C. a – 3; b – 1; c – 2;
D. a – 2; c – 1; b – 3.
Hướng dẫn giải
Đáp án: C
Giải thích:
+) Xét ∆ADB và ∆AEC, có:
AB = AC (giả thiết)
.
là góc chung.
Do đó ∆ADB = ∆AEC (cạnh huyền – góc nhọn)
Khi đó a – 3.
+) Vì ∆ADB = ∆AEC nên (cặp góc tương ứng) và AD = BE (cặp cạnh tương ứng)
Ta có: AD + DC = AC, AE + EB = AB
Mà AB = AC, AD = BE nên DC = EB.
Xét ∆HEB và ∆HDC, có:
BE = DC
Suy ra ∆HEB = ∆HDC (g – c – g)
Do đó b – 1.
+) Xét ∆BEC và ∆CDB, có:
BE = DC
BC là cạnh chung
Suy ra ∆BEC = ∆CDB (cạnh góc vuông – cạnh huyền)
Do đó c – 2.
Vậy a – 3, b – 1, c – 2.
Chọn đáp án C.
Câu 3. Cho hình chữ nhật ABCD, M là trung điểm của cạnh BC. Kết luận nào sau đây sai?
A. AM = DM;
B. ∆ABM = ∆ADM ;
C. ;
D. A, B, C sai.
Hướng dẫn giải
Đáp án: D
Giải thích:
Xét ∆ABM và ∆DCM, có:
AB = DC (ABCD là hình chữ nhật)
(ABCD là hình chữ nhật)
MB = MC (giả thiết)
Do đó ∆ABM = ∆DCM (c.g.c)
Suy ra AM = DM và (cặp cạnh và cặp góc tương ứng)
Ta có: (các cặp góc phụ nhau)
Suy ra
Vì vậy phương án A, B, C đều đúng.
Vậy ta chọn phương án D.
Câu 4. Cho tam giác ABC có AD vuông góc với BC. Biết AB = AC = 3cm, . Tính cạnh BC.
A. BC = 6 cm;
B. BC = 1,5 cm;
C. BC = 9 cm;
D. BC = 3cm.
Hướng dẫn giải
Đáp án: D
Giải thích:
Xét ∆ADB và ∆ADC, có:
AD là cạnh chung.
.
DB = DC (giả thiết)
Do đó ∆ADB = ∆ADC (c.g.c)
(cặp góc tương ứng)
Xét tam giác ABC, có: (định lí tổng ba góc trong tam giác)
.
Kẻ BE vuông góc với AC.
Xét ∆BEA và ∆BEC, có:
BE là cạnh chung
Do đó ∆BEA = ∆BEC (cạnh góc vuông – góc nhọn)
Suy ra AB = BC
Mà AB = 3cm nên BC = 3cm.
Vậy chọn đáp án D.
Câu 5. Cho hình vẽ bên.
Khẳng định nào sau đây sai?
A. ∆AED = ∆AFD;
B. ∆BED = ∆CFD;
C. ∆ADB = ∆ADC;
D. ∆ADE = ∆AFD.
Hướng dẫn giải
Đáp án: D
Giải thích:
⦁ Xét phương án B:
Xét ∆BED và ∆CFD, có:
.
BD = CD (giả thiết)
(giả thiết)
Do đó ∆BED = ∆CFD (cạnh huyền – góc nhọn)
Vì vậy phương án B đúng.
⦁ Xét ∆AED và ∆AFD, có:
AD là cạnh chung.
ED = FD (∆BED = ∆CFD)
.
Do đó ∆AED = ∆AFD (cạnh huyền – cạnh góc vuông)
Vì vậy phương án A đúng, phương án D sai (do viết sai thứ tự các đỉnh).
⦁ Xét phương án C:
Xét ∆ADB và ∆ADC, có:
AD là cạnh chung.
.
DB = DC (giả thiết)
Do đó ∆ADB = ∆ADC (c.g.c)
Vì vậy phương án C đúng.
Vậy ta chọn phương án D.
Câu 6. Cho ∆ABC có AB = AC và . Trên cạnh BC, lấy hai điểm D và E sao cho BD = EC. Kẻ DM vuông góc với AB (M ∈ AB) và EN vuông góc với AC (N ∈ AC). Kết luận nào sau đây đúng nhất?
A. ∆AMD = ∆ANE;
B. ∆ABD = ∆ACE;
C. MD = EN;
D. Cả A, B, C đều đúng.
Hướng dẫn giải
Đáp án: D
Giải thích:
Xét ∆ABD và ∆ACE, có:
BD = EC (giả thiết)
(giả thiết)
AB = AC (giả thiết)
Do đó ∆ABD = ∆ACE (c.g.c)
Suy ra và AD = AE (cặp góc và cặp cạnh tương ứng)
Vì vậy phương án B đúng.
Xét ∆AMD và ∆ANE, có:
.
AD = AE (chứng minh trên)
(chứng minh trên)
Do đó ∆AMD = ∆ANE (cạnh huyền – góc nhọn)
Suy ra MD = EN (cặp cạnh tương ứng)
Vì vậy phương án A, C đúng.
Vậy ta chọn phương án D.
Câu 7. Cho đoạn thẳng BC và điểm H nằm giữa B và C. Qua H kẻ đường thẳng vuông góc với BC. Trên đường thẳng đó lấy các điểm A và K sao cho HA = HK. Kẻ các đoạn thẳng AB, BK, KC, CA. Kết luận nào sau đây sai?
A. BA = BK;
B. ;
C. ;
D. ∆AHB = ∆KHB.
Hướng dẫn giải
Đáp án: B
Giải thích:
Xét ∆AHB và ∆KHB, có:
HA = HK (giả thiết)
.
BH là cạnh chung.
Do đó ∆AHB = ∆KHB (c.g.c)
Suy ra BA = BK, và (các cặp cạnh và cặp góc tương ứng)
Vì vậy phương án A, C, D đúng, phương án B sai.
Vậy ta chọn phương án B.
Xem thêm tóm tắt lý thuyết Toán lớp 7 sách Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác
Lý thuyết Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác
Lý thuyết Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng
Lý thuyết Bài 17: Thu thập và phân loại dữ liệu
Xem thêm các chương trình khác:
- Giải sgk Lịch sử 7 – Kết nối tri thức
- Lý thuyết Lịch Sử 7 – Kết nối tri thức
- Giải sbt Lịch sử 7 – Kết nối tri thức
- Giải VTH Lịch sử 7 – Kết nối tri thức
- Soạn văn lớp 7 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Soạn văn lớp 7 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Văn mẫu lớp 7 – Kết nối tri thức
- Giải VTH Ngữ văn lớp 7 – Kết nối tri thức
- Giải sgk Địa Lí 7 – Kết nối tri thức
- Lý thuyết Địa Lí 7 – Kết nối tri thức
- Giải sbt Địa lí 7 – Kết nối tri thức
- Giải VTH Địa lí 7 – Kết nối tri thức
- Giải sgk Tiếng Anh 7 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 7 Global Success - Kết nối tri thức
- Bài tập Tiếng Anh 7 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 7 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 Global success
- Giải sgk Giáo dục công dân 7 – Kết nối tri thức
- Lý thuyết GDCD 7 – Kết nối tri thức
- Giải sbt Giáo dục công dân 7 – Kết nối tri thức
- Giải vth Giáo dục công dân 7 – Kết nối tri thức
- Giải sgk Khoa học tự nhiên 7 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm lớp 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Công nghệ 7 – Kết nối tri thức
- Lý thuyết Công nghệ 7 – Kết nối tri thức
- Giải sbt Công nghệ 7 – Kết nối tri thức
- Giải VTH Công nghệ 7 – KNTT
- Giải sgk Tin học 7 – Kết nối tri thức
- Lý thuyết Tin học 7 – Kết nối tri thức
- Giải sbt Tin học 7 – Kết nối tri thức
- Giải VTH Tin học 7 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 7 – Kết nối tri thức
- Giải sgk Âm nhạc 7 – Kết nối tri thức