Giải Toán 10 trang 78 Tập 1 Chân trời sáng tạo

Với giải bài tập Toán lớp 10 trang 78 Tập 1 trong Bài 3: Giải tam giác và ứng dụng thực tế sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 78 Tập 1.

1 259 21/02/2023


Giải Toán 10 trang 78 Tập 1

Bài 4 trang 78 Toán lớp 10 Tập 1Tính chiều cao AB của một ngọn núi. Biết tại hai điểm C, D cách nhau 1 km trên mặt đất (B, C, D thẳng hàng), người ta nhìn thấy đỉnh A của núi với góc nâng lần lượt là 32° và 40° (Hình 9).

Giải Toán 10 Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời sáng tạo (ảnh 1)

Lời giải:

CDA^ ADB^ là hai góc kề bù nên CDA^=1800400=1400

Xét tam giác ACD có : CAD^=1800(320+1400)=80

Áp dụng định lí sin ta có: ADsinC=CDsinAAD=CD.sinCsinA=1.sin320sin80 ≈ 3,81 km.

Xét tam giác ABD vuông tại B, ta có:sinADB^=ABADAB=AD.sin400 ≈ 2,45 km.

Bài 5 trang 78 Toán lớp 10 Tập 1Hai người quan sát khinh khí cầu tại hai địa điểm P và Q nằm ở sườn đồi nghiêng 32° so với phương ngang, cách nhau 60 m (Hình 10). Người quan sát tại P xác định góc nâng của khinh khí cầu là 62°. Cùng lúc đó, người quan sát tại Q xác định góc nâng của khinh khí cầu đó là 70°. Tính khoảng cách từ Q đến khinh khí cầu.

Giải Toán 10 Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời sáng tạo (ảnh 1)

Lời giải:

Giải Toán 10 Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời sáng tạo (ảnh 1)

Gọi điểm tại khinh khí cầu là A

Theo giả thiết ta có: APQ^=300;α=380

AQP^ α là hai góc kề bù nên  AQP^=1800380=1420

PAQ^=1800(300+1420)=80

Áp dụng định lí sin ta có:

PQsinA=AQsinAPQ^AQ=PQ.sinAPQ^sinA=60.sin300sin80 ≈ 215,56 km.

Bài 6 trang 78 Toán lớp 10 Tập 1Một người đứng ở trên một tháp truyền hình cao 352 m so với mặt đất, muốn xác định khoảng cách giữa hai cột mốc trên mặt đất bên dưới. Người đó quan sát thấy góc được tạo bởi hai đường ngắm tới hai mốc này là 43°, góc giữa phương thẳng đứng và đường ngắm tới một điểm mốc trên mặt đất là 62° và điểm mốc khác là 54° (Hình 11). Tính khoảng cách giữa hai cột mốc này.

Giải Toán 10 Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời sáng tạo (ảnh 1)

Lời giải:

Giải Toán 10 Bài 3: Giải tam giác và ứng dụng thực tế - Chân trời sáng tạo (ảnh 1)

Xét tam giác ADB vuông tại B ta có:

cos620=ABADAD=ABcos620=352cos620749,78 m.

Tương tự với tam giác ABC vuông tại B ta có: AC=ABcos540598,86

Áp dụng định lí côsin ta có:

 CD2=AD2+AC22AD.AC.cos430264028,34

CD ≈ 513,84 m

Vậy khoảng cách giữa hai mốc này khoảng 513,84 m.

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải Toán 10 trang 74 Tập 1

Giải Toán 10 trang 75 Tập 1

Giải Toán 10 trang 76 Tập 1

Giải Toán 10 trang 77 Tập 1

Giải Toán 10 trang 78 Tập 1

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

1 259 21/02/2023


Xem thêm các chương trình khác: