500 Bài tập Toán 12 Chương 4: Số phức mới nhất

Với 500 Bài tập Toán 12 Chương 4: Số phức mới nhất mới nhất được biên soạn bám sát chương trình Toán lớp 12 giúp bạn học tốt môn Toán hơn.

1 580 24/09/2022


Mục lục Bài tập Toán 12 Chương 4: Số phức mới nhất

Bài tập Số phức

Xem chi tiết 

Bài tập Cộng, trừ và nhân số phức

Xem chi tiết 

Bài tập Phép chia số phức

Xem chi tiết 

Bài tập Phương trình bậc hai với hệ số thực

Xem chi tiết 

Bài tập Ôn tập chương 4

Xem chi tiết 

Xem thêm các bài Chuyên đề Toán lớp 12 hay, chi tiết khác:

Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Chương 2: Hàm số lũy thừa, hàm số mũ, hàm số logarit

Chương 3: Nguyên hàm, tích phân và ứng dụng

Chương 1: Khối đa diện

Chương 2: Mặt nón, mặt trụ, mặt cầu

-----------------------------------------------------------

Bài tập Số phức - Toán 12

I. Bài tập trắc nghiệm

Bài 1: Môđun của số phức z = -3 + 4i là

A. 5   

B. -3   

C. 4   

D. 7

Lời giải:

Ta có: z = -3 + 4i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Môđun của số phức z = 2 - 3i là

A. 7    

B. 2 + 3   

C. 2 - 3   

D. 7

Lời giải:

Ta có: z = 2 - 3i

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 3: Số phức z = 1 - 2i có điểm biểu diễn là

A. M (1; 2)   

B. M (1; -2)   

C. M (-1; 2)   

D. M (-1; -2)

Lời giải:

Số phức z = 1 - 2i có điểm biểu diễn là M(1; -2).

Bài 4: Hai điểm biểu diễn hai số phức liên hợp z = 1 + i và z− = 1 - i đối xứng nhau qua

A. Trục tung   

B. Trục hoành   

C. Gốc tọa độ   

D. Điểm I (1; -1)

Lời giải:

Hai điểm biểu diễn của z = 1 + i và z− = 1 - i là M(1; 1) và N(1; -1) đối xứng với nhau qua trục Ox.

Bài 5: Tập hợp các điểm biểu diễn số phức z thỏa mãn |z| = 2 là

A. Hai đường thẳng   

B. Đường tròn bán kính bằng 2

C. Đường tròn bán kính bằng 4   

D. Hình tròn bán kính bằng 2.

Lời giải:

Gọi M là diểm biểu diễn của z. Ta có: |z| = 2 ⇔ OM = 2

Vậy quỹ tích của M là đường tròn tâm là gốc tọa độ O và bán kính R = 2.

Bài 6: Gọi A, B là các điểm biểu diễn của các số phức z1 = -1 + 2i, z2 = 2 + 3i . Khi đó, độ dài đoạn thẳng AB là

A. 26  

B. 5+13   

C. 10   

D. 10

Lời giải:

Ta có: A(-1;2), B(2,3). Do đó:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Cho số phức z = 2 – 2i. Tìm khẳng định sai.

A. Phần thực của z là: 2.

B. Phần ảo của z là: -2.

C. Số phức liên hợp của z là z− = -2 + 2i.

D. Môđun của z là

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Số phức liên hợp của z là z− = 2 + 2i nên khẳng định C là sai.

Chọn đáp án C.

Bài 8: Cho số phức z = -1 + 3i. Phần thực, phần ảo của z− là

A. -1 và 3    

B. -1 và -3    

C. 1 và -3    

D. -1 và -3i.

Lời giải:

Ta có z = -1 + 3i => z− = -1 - 3i

Vậy phần thực và phần ảo của z− là -1 và -3.

Chọn đáp án B.

Bài 9: Môđun của số phức z thỏa mãn z− = 8 - 6i là

A. 2   

B. 10    

C. 14    

D. 27

Lời giải:

Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn đáp án B.

Bài 10: Tìm các số thực x, y sao cho (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

A. x = 3, y = 1    

B. x = 3, y = -1

C. x = -3, y = -1    

D. x = -3, y = 1

Lời giải:

Ta có (x – 2y) + (x + y + 4).i = (2x + y) + 2yi.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy x = -3, y = 1.

1 580 24/09/2022