500 Bài tập Toán 12 Chương 3: Nguyên hàm, tích phân và ứng dụng mới nhất

Với 500 Bài tập Toán 12 Chương 3: Nguyên hàm, tích phân và ứng dụng mới nhất được biên soạn bám sát chương trình Toán lớp 12 giúp bạn học tốt môn Toán hơn.

1 796 24/09/2022


Mục lục Bài tập Toán 12 Chương 3: Nguyên hàm, tích phân và ứng dụng

Bài tập Nguyên hàm

Xem chi tiết 

Bài tập Tích phân

Xem chi tiết 

Bài tập Ứng dụng hình học của tích phân

Xem chi tiết 

Bài tập Ôn tập chương 3

Xem chi tiết 

Xem thêm các bài Chuyên đề Toán lớp 12 hay, chi tiết khác:

Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Chương 2: Hàm số lũy thừa, hàm số mũ, hàm số logarit

Chương 4: Số phức mới nhất

Chương 1: Khối đa diện

Chương 3: Phương pháp tọa độ trong không gian

-----------------------------------------------------------

Bài tập Nguyên hàm - Toán 12

I. Bài tập trắc nghiệm

Bài 1:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Đặt u = ex + 1 ⇒ u' = ex. Ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 2: Trong các hàm số sau hàm số nào không phải là một nguyên hàm của f(x) = cosxsinx ?

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Cách 1.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Cách 2. Sử dụng phương pháp biến đổi số ta có:

Đặt u = cosx thì u’ = -sinx và ∫sinxcosxdx = -∫u.u'dx = -∫udu

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án D.

Bài 3: Tìm I=∫(3x2 - x + 1)exdx

A. I = (3x2 - 7x +8)ex + C    

B. I = (3x2 - 7x)ex + C

C. I = (3x2 - 7x +8) + ex + C    

D. I = (3x2 - 7x + 3)ex + C

Lời giải:

Sử dụng phương pháp tính nguyên hàm từng phần ta có:

Đặt u = 3x2 - x + 1 và dv = exdx ta có du = (6x - 1)dx và v = ex . Do đó:

∫(3x2 - x + 1)exdx = (3x2 - x + 1)ex - ∫(6x - 1)exdx

Đặt u1 = 6x - 1; dv1 = exdx Ta có: du1 = 6dx và v1 = ex .

Do đó ∫(6x - 1)exdx = (6x - 1)ex - 6∫exdx = (6x - 1)e- 6ex + C

Từ đó suy ra

∫(3x2 - x + 1)exdx = (3x2 - x + 1)ex - (6x - 7)ex + C = (3x2 - 7x + 8)ex + C

Vậy chọn đáp án A.

Bài 4:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Bài 5: Một vật chuyển động với vận tốc v(t) (m/s) có gia tốc

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vận tốc ban đầu của vật là 6m/s. Vận tốc của vật sau 10 giây xấp xỉ bằng

A. 10m/s   

B. 11m/s   

C. 12m/s   

D. 13m/s.

Lời giải:

Vận tốc của vật bằng

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

với t = 0 ta có v(0)= C = 6 nên phương trình vận tốc của chuyển động là :

v(t) = 3ln(t + 1) + 6 (m/s)

khi đó v(10) = 3ln11 + 6 ≈ 13 (m/s) .

Vậy chọn đáp án D.

Bài 6: Tìm I = ∫cos(4x + 3)dx .

A. I = sin(4x + 2) + C    

B. I = - sin(4x + 3) + C

C. I = (14).sin(4x + 3) + C   

D. I = 4sin(4x + 3) + C

Lời giải:

Đặt u = 4x + 3

⇒ du = 4dx ⇒ dx = 14 du và cos(4x+3)dx được viết thành

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Bài 7: Trong các mệnh đề sau mệnh đề nào nhận giá trị đúng?

A. Hàm số y = 1x có nguyên hàm trên (-∞; +∞).

B. 3x2 là một số nguyên hàm của x3 trên (-∞; +∞).

C. Hàm số y = |x| có nguyên hàm trên (-∞;+∞).

D. 1x + C là họ nguyên hàm của ln⁡x trên (0;+∞).

Lời giải:

Dựa vào định lí: Mọi hàm số liên tục trên K đều có nguyên

hàm trên K. Vì y = |x| liên tục trên R nên có nguyên hàm trên R .

Phương án A sai vì y=1x không xác định tại x=0 ∈ (-∞;+∞).

Phương án B sai vì 3x2 là đạo hàm của x3.

Phương án D sai vì 1x là đạo hàm của ln⁡x trên (0; +∞).

Vậy chọn đáp án C.

Bài 8: Hàm số nào dưới đây không phải là một nguyên hàm của f(x)=2x-sin⁡2x ?

x2 + (12).cos⁡2x    

B. x2 + cos2 x    

C. x2 - sin2x    

D. x2 + cos⁡2x .

Lời giải:

Ta có

   ∫(2x-sin⁡2x)dx=2∫xdx-∫sin⁡2xdx

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

D không phải là nguyên hàm của f(x). Vậy chọn đáp án D.

Bài 9: Tìm nguyên hàm của

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Với x ∈ (0; +∞) ta có

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án C.

Bài 10:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

 Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Lời giải:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Vậy chọn đáp án B.

Ghi chú. Yêu cầu tìm nguyên hàm của một hàm số được hiểu là tìm nguyên hàm trên từng khoảng xác định của nó.

1 796 24/09/2022